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The Effects of Deformed Projectile in Threshold Anomaly and Fusion Reaction
for 19F + 208Pb System
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Angular distributions of elastic scatterings for 19F + 208Pb system have been measured at six energies around the
Coulomb barrier. It is found that the real and imaginary potentials show pronounced energy dependence in terms
of the phenomenological optical model analysis. The real parts of potentials extracted from the fusion data are
similar to those from the elastic data. A comparison with the neighbouring systems of 16O + 208Pb and 16O + 209Bi
reveals that the 19F deformations play an important role in the fusion reaction. Based on the deformed and energy
dependent barrier penetration model, the calculated fusion cross sections and mean-square spin distribution agree
with the experimental data well. Moreover, it is indicated that the enhancement of fusion cross sections attributes to
the dynamic polarization effects around the barrier, and to the static deformation effects further below the barrier.

1. Introduction

It is well known that the threshold anomaly (TA) comes from
the coupled-channels (CC) effects and plays an important role
in heavy ion reaction at the energies around the Coulomb bar-
rier.1,2 The existence of the TA in the interacting potential for
the elastic scattering has been formed for many systems. This
anomaly shows up as a localized peak in the real part of the
interacting potential around the Coulomb barrier and it is asso-
ciated with the decrease of the imaginary part of the interacting
potential in the same energy range. It has been shown that this
correlation between the real and imaginary parts of the interact-
ing potential is due to causality and consequently that they obey
the dispersion relation.

Due to the difficulty to calculate the dynamic polarization po-
tential in theory, TA is still a purely experimental matter up to
now. Most of systems studied are spherical or near spherical.
Very little work has been done for well deformed system3 with
attempt to understand the effects of nuclear structure, especially
for the deformed projectile. In this work, the 19F + 208Pb sys-
tem was chosen because 19F nucleus has quite large static defor-
mations (β2 = 0.44 and β4 = 0.14).4 The CC effects in this sys-
tem should be pronounced and appreciably influence on the fu-
sion channel. Since the neighboring systems of 16O + 208Pb and
16O + 209Bi are well investigated,5–7 it is interesting to make a
comparison with these systems. Furthermore, the fusion data of
19F + 208Pb system are available in the literatures.8,9 It is mean-
ingful to compare these data with the calculations of barrier pen-
etration model (BPM) modified by the deformations and energy
dependence.

2. Experimental Procedure

The experiment was carried out at HI-13 tandem accelerator
of China Institute of Atomic Energy, Beijing. A 208Pb target of
thickness about 100 µg/cm2 evaporated onto a 20 µg/cm2 car-
bon foil backing was bombarded by a collimated 19F beam. The
beam energies were 88, 91, 93, 96, 98, and 102 MeV, respec-
tively. The reaction products were detected by three pairs of
∆E-E telescope detectors with the total energy resolution less
than 1.3%. A typical spectrum cut by the Z = 9 banana in the
∆E-E matrix at EL = 102 MeV and θL = 86◦ is shown in Figure 1.
A Si(Au) surface barrier detector was mounted at −42.4◦ with
respect to the beam direction as a monitor to detect the elastic
scatterings. All the reaction cross sections were normalized to
the monitor counts, assuming that the elastic cross sections are
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equal to the Rutherford cross sections at the forward angles.
The energy resolutions of the detectors allow to separate all

the Ex ≥ 1.3457 MeV states of 19F and all the excitation states of
208Pb from ground states, while the two lower excitation states
0.1099 MeV and 0.1971 MeV of 19F cannot be resolved from
the measured elastic scatterings. Thus the elastic spectra in-
clude the inelastic scatterings of these two low-lying excitation
states. The differential elastic scattering cross sections normal-
ized to the Rutherford cross sections for all energies are shown
in Figure 2. The overall error is 3% for the forward angles and
gradually increases to 10% for the backward angles.

3. Energy Dependent Potentials

3.1. Optical Model Analysis of Elastic Scatterings. In
this work the phenomenological analyses are utilized to get
the polarization optical potentials. Since the low-lying excited
states are not resolved, the coupled-channels code ECIS9510 is
employed to fit the elastic scattering angular distributions in or-
der to get the pure elastic scattering potentials. In these calcula-
tions only the couplings between the Ex = 0.1971 MeV, Jπ = 5/2+

state and ground state which belong to the K = 1/2+ ground state
rotational band are taken into account. The same optical po-
tentials are assumed for these two coupling nuclear states. An-
other excitation state Ex = 0.1099 MeV, Jπ = 1/2− which belongs
to K = 1/2− band is not included, because the strength coupled
to the ground state band is very weak.

In the calculations, the Woods-Saxon shapes of the real
and imaginary potentials are kept the same (r0v = r0w = r0,
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Figure 1. A typical elastic and inelastic spectrum.
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TABLE 1: The sensitive radii and the results of the best fits ob-
tained at r0 = 1.24 fm and a0 = 0.53 fm for elastic scatterings.

Elab RSV RSW −V0 −W0 χ2/pt σR

/ MeV / fm / fm / MeV / MeV / mb
102 12.86 13.16 73.2 44.5 7.67 1169
98 12.62 12.75 77.2 23.4 10.5 897.2
96 12.58 12.89 77.5 22.5 27.1 838.3
93 12.50 12.20 85.1 10.2 14.2 673.2
91 12.32 12.12 88.6 3.44 8.87 579.9
88 12.24 78.4 1.57 1.25 512.0

av = aw = a0). In order to assess the influences of the potential
parameters, two sets of fits are performed with the fixed radius
parameters r0 = 1.20 fm and r0 = 1.24 fm, respectively. For each
set, a grid search is made on the different diffuseness parame-
ters (a0 = 0.43, 0.48, 0.53, 0.58, 0.63, 0.68 fm) to obtain the best
V0 and W0 values with the minimum χ2. It is found that the χ2

values reach their minimum when r0 = 1.24 fm and a0 = 0.53 fm
for all energies. The results of the best fits in this case are il-
lustrated in Figure 2 as the solid lines and the parameters are
listed in Table 1. All the lines of the real or imaginary potentials
with different parameters converge at a certain distance, namely
sensitive radius (RS). At the RS, the potentials have a minimum
uncertainty and are nearly independent of geometrical shapes.
It is realized that the RS values depend on the energies and have
some differences between the real and imaginary parts of poten-
tials. For consistency, RS are taken as 12.5 fm for both real and
imaginary parts of potentials at all energies. The real and imag-
inary parts of potentials at the RS (VS and WS) are illustrated in
Figure 3 with the circle symbols. The errors are derived from
the χ2 values. It is clear that the potentials are energy dependent
around the Coulomb barrier, as the typical TA behaviour.

3.2. Extract TA Parameters in Linear Model. For con-
venience, the linear schematic model of the two straight line
segments is utilized to describe the TA behaviour.1,2 WS(E) is
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Figure 2. Angular distributions of elastic scatterings.

defined as

WS(E) =




0 E ≤ Ea

W0S
E −Ea

Eb −Ea
Ea < E < Eb

W0S E ≥ Eb

, (1)

and according to the dispersion relation, VS(E) is

VS(E) = V0S +∆VS(E)
= V0S − (W0S/π)[εa ln |εa|− εb ln |εb| ] . (2)

Here εi = (E −Ei)/(Eb −Ea) with i = a,b, respectively. In the
above equations the variables with subscription S indicate the
values at the RS. Thus, in the linear model the TA can be de-
scribed by four parameters: Ea, Eb, W0S, and V0S. In general,
these parameters except V0S are determined by fitting the imagi-
nary potentials with eq 1, and the V0S is obtained at the reference
point of which the real potential is almost energy independent.
Due to the energy limit, the present work lacks of some high
energy points as the reference to extract the energy-independent
potential W0S. Moreover, no elastic scattering data in the litera-
ture are available for this system. Anyway the real and imagi-
nary potentials can be simultaneously fit by eq 1 and eq 2, as-
suming the above equations are tenable (assuredly, this assump-
tion is trustworthy). Thus the four parameters Ea = 89.2 MeV,
Eb = 101.7 MeV, W0S =−1.20 MeV, and V0S =−2.19 MeV were
reliably extracted by the fits. The results are shown in Figure 3
with the solid lines.

3.3. Extract TA Parameters From Fusion Data. In fact,
the energy dependent potentials can be extracted from the fu-
sion excitation function.11 It is interesting to compare them with
those from elastic scatterings. The BPM model with the con-
sideration of nuclear deformation is used under the parabolic
approximation. The partial cross section at each angle is given
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by

σl
f (E,θ) =

π(2l +1)
k2

[
1+ exp

{
2π

h̄ω(θ)

(
VB(θ)−Ecm

+
l(l +1)h̄2

2µR2
B(θ)

)}]−1

, (3)

where k is the wave number, µ is the reduced mass, VB(θ), RB(θ),
and h̄ω(θ) the barrier parameters (height, radius, and curvature)
for different orientation, respectively. Summing over the partial
waves, the above equation becomes

σ f (E,θ) = ∑
l

σl
f (E,θ)

=
R2

B(θ)h̄ω(θ)
2Ecm

ln
[

1+ exp
{

2π
h̄ω(θ)

(Ecm −VB(θ))
}]

.

(4)

Then the total cross section is given by integration over the an-
gles

σ f (E) =
Z π/2

0
σ f (E,θ)dθ . (5)

On the basis of Wong model,12 the symmetrical deformations
of 19F up to hexadecapole are taken into account in the calcula-
tions. The radial radius is expressed as

R(θ) = R0[1+β2Y2(θ)+β4Y4(θ) ] . (6)

Here R0 is the radius of the spherical nucleus with equivalent
volume, θ is the orientation angle of deformed nucleus with re-
spect to the collision axis, and the Y (θ) is the spherical har-
monic. The interaction potentials, including the Coulomb po-
tential and the nuclear potential are taken as the deformed form,
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Figure 4. The fusion excitation functions and mean square spin distri-
butions.

VC(r,θ) =
Z1Z2e2

r

[
1 +

1
r2 ∑

i=P,T

R2
0i

(√
9

20π β2iP2(cosθi)

+ 3
7π [β2iP2(cosθi) ]2

)

+ 1
r4 ∑

i=P,T

R4
0i

√
1

4π β4iP4(cosθi)

]
, (7)

VN(r,θ) = V0

[
1 + exp

{(
r−R0

− ∑
i=P,T

R0i

[√
5

4π β2iP2(cosθi)

+

√
9

4π β4iP4(cosθi)

])
/a

}]−1

, (8)

with R0 = R0P + R0T + 0.29 fm, R0i = (1.233A1/3
i −0.98A−1/3

i ) fm,
i = P,T , and a = 0.63 fm. P(cosθ) is the Legendre polynomial
whose orders are considered up to 4, neglecting the higher or-
der terms and other square terms. The nuclear potential only
contains the real part for the fusion channel.

In terms of eq 3–8, V0 can be determined by tuning it when
the calculation value equals to the experimental fusion cross sec-
tion.8,9 In order to compare with the TA behaviour of elastic
scattering, the V0S values are calculated at the same sensitive
radius 12.5 fm. The results are also shown in Figure 3 with
the square symbols. In the figure, the dashed line in the real
part of potentials represents the best fit by eq 2 with TA pa-
rameters Ea = 89.5 MeV, Eb = 99.1 MeV, W0S =−1.03 MeV, and
V0S =−2.23 MeV. The dashed line in the imaginary part of po-
tentials is the results calculated by eq 1. It should be pointed out

-10 -5 0 5 10 15 20
10-1

100

101

102

103

104

105

σ
R
x100

σ
QE

x10

σ
F

 19F+208Pb

 16O+208Pb

 16O+209Bi

σ 
 / 

m
b

E
c.m.

-V
B
  / MeV

Figure 5. Comparison with the neighbouring systems.
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that the potentials extracted from the fusion data correspond to
the inner radius and it has a large degree of uncertainty to ex-
trapolate to an outer radius, for example, to the sensitive radius.
Anyhow, it can be seen from the figure that these two kinds of
TA behaviours are similar. This reflects that they have the same
cause, namely CC effects.

4. Discussion

4.1. Fusion Excitation Function and Spin Distribution.
In general, the energy dependent BPM model can well repro-
duce the enhancement of fusion cross sections near and below
the barrier, but fails to describe the broadening of spin distri-
bution. In addition to the energy dependence, the deformation
effects are considered in the present work. The TA parame-
ters extracted from elastic scatterings are employed in the cal-
culations. The results well reproduce both cross sections and
mean-square spins, as shown in Figure 4. The CC results cal-
culated by CCDEF code are also illustrated in the figure for
comparison. In the CC calculation, six inelastic channels are
included, as done by Zhang et al.,9 the 0.19714, 1.3457, 1.5540,
and 2.7798 MeV excited states of 19F with β2 = 0.55, β3 = 0.33,
β2 = 0.58, β4 = 0.22, as well as the 2.6146 and 3.1977 MeV ex-
cited states of 208Pb with β3 = 0.12 and β5 = 0.05, respectively.
It is clear that the increases of fusion cross sections and mean-
square spins around the Coulomb barrier attribute to the energy
dependent potential, in other words, to the dynamic polarization
effects. While in the energy region further below the barrier,
the static deformations of the nucleus should be considered to
play an important role. The small bump around the barrier in
the mean-square spin distribution results from the deformations.

4.2. Comparison with 16O + 208Pb and 16O + 209Bi Systems.
The reaction, quasi-elastic and fusion cross sections as a func-
tion of Ecm −VB for these three systems are plotted in Fig-
ure 5. The data of 16O + 208Pb and 16O + 209Bi systems are taken
from References 5–7. Here the Bass barriers13 of 85.4 MeV,
77.1 MeV, and 78.0 MeV are used for 19F + 208Pb, 16O + 208Pb,
and 16O + 209Bi systems, respectively. As shown in Figure 5,
both reaction and quasi-elastic cross sections are comparable for
the 16O + 208Pb and 16O + 209Bi systems, while obviously larger
for the 19F + 208Pb system. Maybe, the larger probability of the
quasi-elastic reactions results from the structure of projectile 19F.
The fusion cross sections are comparable for these three systems
at near and well above barrier energies, but at energies lower
than a certain value (i.e. 3 MeV below the barrier) the fusion
cross sections of 19F + 208Pb system are obviously larger than
those of the other two systems which are still comparable. It is
difficult to understand why 16O + 208Pb and 16O + 209Bi systems
have the same tendencies in fusion excitation function while
19F + 208Pb system does not. As shown in References 2,7, the fu-
sion excitation functions can be reproduced by consideration of
the energy dependent potentials for 16O + 208Pb and 16O + 209Bi
systems. But for 19F + 208Pb system, the above analysis shows
that it is not enough to explain the larger fusion cross sections
at low energies. When the effects of 19F deformations are also
taken into account in the calculations, the fusion excitation func-
tion can be reproduced quite well. Hence, we may conclude that

the nuclear deformations give rise to some effects in the process
of fusion below the Coulomb barrier.

5. Conclusion

The angular distributions of elastic scatterings are pre-
sented at six energies near and below the Coulomb barrier for
19F + 208Pb system. The phenomenological optical model analy-
sis gives the depths of the real and imaginary potentials, showing
that both real and imaginary potentials have pronounced energy
dependence. The real parts of potentials derived from the fusion
channel also show the energy dependence and are quite similar
to those from the elastic channel. In the framework of the linear
model, the TA parameters are extracted from both elastic and
fusion channels. Comparison with the neighbouring systems
shows that the projectile deformations have effects on the fusion
reaction at low energy range. Using the TA parameters extracted
from the elastic channels, the fusion excitation function and the
mean-square spin distribution are reproduced by the deformed
and energy dependent BPM model. In addition, the calculations
indicate that the dynamic polarization effects play roles around
the barrier, while the static deformations are at work at energies
further below the barrier. From the above conclusion, we draw a
deduction that the deformed configuration is of great benefit to
synthesis of heavy or super heavy nuclide at low energy.
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