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Spectroscopy with Giant Trinuclear Molecules
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Recent experimental investigations are pointing to the existence of a new type of nuclear phenomenon which consists
in the formation of a long living molecule during the cold fragmentation of 252Cf. For such long times it is possible
that the nuclear molecules rotate and vibrate like atomic molecules making thus possible the study of a new type
of spectroscopy. We present in this paper the basic ideas which are leading to the calculation of rotational and
vibrational bands of three-clusters molecules.

1. Introduction

Among the various phenomena occurring in Nuclear Physics
at low energy, the spontaneous clustering of heavy nuclei in two
or more lighter nuclei, represents a remarkable example of quan-
tum phenomena without analogue in classical mechanics. For
certain combinations of nuclei a local equilibrium position be-
tween repulsive and attractive nuclear and Coulomb will show-
up. A nuclear molecule is a system consisting of two or more nu-
clei bound together on their surfaces in a quasi-bound potential.
In the past such exotic nuclear structures were produced in close
collisions of 12C by Bromley.1 Molecular states provided ex-
perimental evidence that interacting nuclei were retaining their
identity during collisions, thus forming an effective bond which
can rotate and vibrate like atomic molecules before flying apart
or coalescing into a fused nucleus. It was also supposed that
long-living shape isomeric states might be considered also as
nuclear molecules due to the pockets in the deformation ener-
gies which are developing at large elongations. Also the new
type of radioactivity consisting in the emission of heavy nuclei,
such as 14C, 24Ne, 28,30Mg, and 32Si predicted by Săndulescu et
al.2 and experimentally discovered by Rose and Jones in 19843

can be viewed as an example of nuclear molecules occurring in
the fission process. In view of the similarity of the above men-
tioned phenomena to the cold fission process we undertook the
project to study the neutronless fragmentation of 252Cf in two or
three fragments by means of a molecular scenario.4

Nuclear cold fission is a rare phenomenon consisting in the
disintegration of a large nucleus, such as 252Cf, in two or more
fragments with a very small dissipation of energy on degrees of
freedom, other than the translational motion. Before scission
takes place, and after preformation from the mother nucleus is
accomplished, there is a transient stage when the clusters are in
close vicinity.

In last years the cold fission of 252Cf has been intensively stud-
ied in U.S. using the Gammasphere.5 In the case of the ternary
cold fission, when a light cluster is accompanying the 10Be emis-
sion, the triple-γ coincidence data contains non-Doppler broad-
ened high energy peaks in coincidence with one-ray in each
fragment accompanying 10Be. These peaks are shifted by −6.1
to −26 keV from the 3368 keV energy of the 2+

1 –0+ transi-
tion, a fact which supports the existence of a long-lived nuclear
molecule where the three nuclei stick together for a time larger
than 1 ps. In such circumstances this exotic quantum system is
free to rotate and vibrate like in atomic molecules. In princi-
ple the γ rays coming from the deexcitation of these molecular
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states could be observed in coincidence with the γ rays of the in-
dividual nuclei mentioned above, and therefore could provide a
conclusive evidence in the search of Giant Trinuclear Molecules.

In what follows we want to review our later works on the
collective modes of quasi-molecules occurring in ternary cold
fission. We present first the basic ingredients and results for a
geometrical model aimed to describe the molecular spectrum of
a system composed of an α cluster and two heavy fragments in
triangular and linear configuration. Then we comment on the
usage of algebraic models for three-cluster systems.

2. Geometrical Approach

As we mentioned above a repulsive core will develop in the
nucleus-nucleus interaction at large overlaps. This will deter-
mine a typical molecular minima, provided that at least one of
them has a non-negligible deformation. Mutatis mutandis, the
three-body potential, assumed to be the sum of all two-body
components,

V = V12 +V13 +V23 , (1)

displays a similar quasimolecular pattern with two minima in
the equatorial region and two at the poles of the system. Due
to the axial symmetry, the minima in the equatorial region are
equivalent, and in fact one could speak about a ring which rep-
resents the geometrical locus of the points where the three-body
potential attains an absolute minimum. In the case of α or 10Be-
like quasi-molecules such minima are formed in all two-body
channels.

Very recently we proposed a geometric quantum approach to
the three-body problem which leads to the determination of the
collective spectrum of a linear or a triangular trinuclear molecule
in References 6,7.

Considering three spherical clusters, whose Cartesian space
coordinates are denoted by r1, r2, and r3, the Jacobi coordinates,
for which the two heavier clusters 1 and 2 appear explicitly as
a subsystem, are introduced by means of the following transfor-
mations:

ρ = r2 − r1 ,

λ =
m1r1 +m2r2

m1 +m2
− r3 ,

Rc.m. = m1r1 +m2r2 +m3r3

m1 +m2 +m3
. (2)

Choosing for ρ and λ the following ansatz

ρ = (ρsinaγ, 0, ρcosaγ) ,

λ = (−λ sin(1−a)γ, 0, λcos(1−a)γ) , (3)
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where for triangular configurations

a =
µ(12)3λ2

µ12ρ2 +µ(12)3λ2
,

whereas for linear configurations

a =
1
2γ atan

(
µ(12)3λ2 sin2γ

µ12ρ2 +µ(12)3 cos2γ

)
.

Considering the case 132Sn + α + 116Pd we get a≈ 1/300 at the
minimum so that we can approximate that γ consists of small
deviations from π/2, i.e. we perform the change of variable γ =
π/2− ε. We then obtain the following forms for the quantum
kinetic energy in the triangular

T̂ = − h̄2

2µ12

∂2

∂ρ2
− h̄2

2µ(12)3

∂2

∂λ2

− h̄2

2µ(12)3λ2

∂2

∂ε2
+

h̄2

2µ12ρ2
(L2 −L′2

3 )

+ h̄2

2µ(12)3λ2
L

′2
3 − h̄2ε

µ12ρ2
L′

1L′
3 (4)

and linear configurations

T̂ = − h̄2

2µ12

∂2

∂ρ2
− h̄2

2µ(12)3

∂2

∂λ2

− h̄2

2

(
1

µ(12)3λ2
+ 1

µ12ρ2

)
∂2

∂ε2

+ h̄2

2(µ12ρ2 +µ(12)3λ2)
(L2 −L′2

3 )

+
h̄2

2ε2

(
1

µ(12)3λ2
+

1
µ12ρ2

)(
L′2

3 − 1
4

)
. (5)

Before going further we have to make some considerations
about energy. In both cases, linear and triangular, we have to
stick on some absolute minimum of the potential energy. There-
fore we can expand the potential around these triangular and
linear minima. We considered expansions up to quadratic terms.
Using the above mentioned approximations we get the follow-
ing expression for the fluctuating part of the potential energy in
the triangular

V̂ ≈ 1
2

Cρδρ2 + 1
2

Cλδλ2 + 1
2

Cλλ2ε2

+Cρλ(δρδλsinε−λδρεcosε) , (6)

and linear configurations

V̂ = 1
2

Cρδρ2 + 1
2

Cλδλ2 + 1
2

Cλλ2
0ε2 + 1

2
Cρλδρδλ . (7)

As one can see the kinetic and potential energy are containing
couplings between the different vibrational (specified by the ob-
servables ρ, λ, and ε) and rotational (specified by the angular
momentum) modes in a non-trivial way. Under the assumption
that near the minima’s positions the displacements δρ, δλ, and
ε are not large with respect to the equilibrium values y0 = ρ0,λ0

and ε0 = 0, i.e. y = y0 +δy, with δy� 1 one can expand in Taylor
series all coordinate functions of the kinetic energy and potential
energy operators. Restricting to the zeroth-order approximation
we obtain the rotational-vibrational spectrum for the triangular
case

E (0)
IKnρnεnλ

= h̄ω̃ρ(nρ +
1
2
)+ h̄ω̃ε(nε +

1
2
)+ h̄ωλ(nλ +

1
2
)

+ h̄2

2µ12ρ2
0

[
I(I +1)−K2]+ h̄2

2µ(12)3λ2
0

K2 (8)

the frequencies being defined as follows

ωρ =
√

Cρ

µ12
, ωλ = ωε =

√
Cλ

µ(12)3
, (9)

ω̃2
ρ(ε) = 1

2

(
ω2

ρ +ω2
ε ± (ω2

ρ −ω2
ε) sec2η

)
(10)

provided ω̃ρ > ω̃ε. For the linear case we have

E(0)
IKnρnεnλ

= h̄ω̃ρ(nρ + 1
2
)+ h̄ω̃λ(nλ + 1

2
)

+ h̄ωε

(
|K|+nε + 3

2

)
+

h̄2

2(µ12ρ2
0 +µ(12)3λ2

0)
[
I(I +1)−K2] (11)

where the frequencies are defined as follows

ω̃2
ρ(λ) =

1
2

(
ω2

ρ +ω2
λ ± (ω2

ρ −ω2
λ) sec2η

)
(12)

in case ω̃ρ > ω̃λ and

ωε = λ0

√
Cλ

(
1

µ(12)3λ2
+

1
µ12ρ2

)
. (13)

The parameter η is defined as follows:

tan2η = − 2Cρλ√µ12µ(12)3(ω2
ρ −ω2

ε)
, triangular,

tan2η = − 2Cρλ√µ12µ(12)3(ω2
ρ −ω2

λ)
, linear. (14)

Due to the fact that all three clusters have different masses the
axial symmetry is broken when the three clusters are laying in
a triangular configuration. Then, for the K = 0 bands, positive
and negative parity states are alternating. For K �= 0 there is
no selection rule and for a given angular momentum there is a
parity doublet, starting at I = K and increasing in steps of one:

K �= 0 : K±, (K +1)±, (K +2)±, . . . , . (15)

Thus, for K= even(odd) positive parity states have spin
even(odd) while negative parity states have spin odd(even).

For rotational ground state band of the triangular quasi-
molecule the excited state 1−

1 is at 5.4 keV, and the 2+
1 state

at 16.8 keV. The first state of the K = 1 band is at 213 keV
whereas the 2+ state of the K = 2 band is at 836 keV. The band
head (nρ = 1, nλ = nε = 0) is located at 3.85 MeV, a state which
in principle can be reached in cold fission.

The rotational spectrum of the linear molecule is approxi-
mately two times more compressed than the one corresponding
to the triangular configuration, whereas the vibrational band-
heads are located at almost the same energies as in the triangular
case.

3. Algebraic Approach

Recently inspired from a previous work on baryon structure,8

we proposed an algebraic model which has the advantage to
describe complicated systems, which would require complex
procedures in the geometrical model.9,10 Like in the previous
section, we consider spherical clusters and thus the number of
degrees of freedom are six and for each relative coordinate we
can introduce boson creation and annihilation operators, carry-
ing negative parity. The basic concept of the U(7) model is to
introduce a cutoff through the addition of an s-boson of posi-
tive parity. With this the spherical components of the creation
operators are given by

p†
ρ,m, p†

λ,m, s† (m = −1,0,1) . (16)
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The total number of bosons N = nρ +nλ +ns is conserved, which
implies that the total number of p-bosons is restricted between
zero and N. Taking all possible double products of a creation
with an annihilation operator, we obtain the algebra u(7) with
its 49 generators. The basis states are given by

| N,(nρ,Lρ), (nλ,Lλ);LML〉 , (17)

with nρ and nλ the number operator of the ρ- and λ-oscillation
quanta respectively. The Lρ and Lλ are the angular momenta of
the ρ and λ part, L is the total angular momentum and ML its
projection.

As the model Hamiltonian we use

H = aLL2 +AP†
1 P1 +CP†

2 P2 +CP†
3 P3 +D(P†

1 P2 +P†
2 P1)

+E(P†
1 P3 +P†

3 P1)+F(P†
2 P3 +P†

3 P2) . (18)

The operators Pi are defined via

P†
1 = p†

ρ · pρ + p†
λ · pλ −R2

0s†s† ,

P†
2 = sin2 β0 p†

λ · pλ − cos2 β0 p†
ρ · pρ ,

P†
3 = sin(2β0)p†

ρ · pλ − cosγ0(sin2 β0 p†
λ · pλ

+ cos2 β0 p†
ρ · pρ) , (19)

where the parameter R0 =
√

ρ0 ·ρ0 +λ0 ·λ0 describes the ex-
tension of the system.

The parameter β0 is defined by the relative size of�ρ and�λ, i.e.
λ0 = R0 cosβ0 and ρ0 = R0 sinβ0, and γ0 gives the angle between
the two vectors. Next, the following coherent state is introduced

| NR0,β0γ0〉 =
1√
N!

(b†
c )

N | 0〉 ,

b†
c =

[
s† +R0 cosβ0 p†

λ,x +R0 sinβ0(cosγ0 p†
ρ,x + sinγ0 p†

ρ,y)
]√

1+R2
0

,

(20)
where b†

c is called the collective boson. In order to describe
the motion around the equilibrium position, we introduce fluc-
tuation bosons orthogonal to b†

c . These are b†
u , describing the

breathing mode, b†
v , the butterfly mode, and b†

w is the mode
where the angle γ between the vectors ρ and λ is changing
(shearing mode). A Bogoliubov treatment is applied, where the
b†

c and bc are substituted by
√

N and only leading terms in N are
taken into account. The obtained Hamiltonian has the form

HB = ∑
α1 ,α2

εα1α2 b†
α1

bα2 (21)

with αk = u, v, w. Writing in the second quantization the kinetic
and potential energy from the previous section, we were able to
give explicit expressions to these frequencies.10

Like in the geometrical model we obtain that the ground state
band is severely compressed with a distance of two subsequent
states of the order of keV. The vibrational modes are of the order
of MeV, which indicates a strong separation between rotational
and vibrational modes as in the atomic molecules.

4. Conclusions and Perspectives

Based on potential energy considerations we analyzed the
molecular collective spectrum of giant trinuclear molecules
when all three clusters are spherical. Applications have been
considered for the three-body cold breakup of 252Cf when the
light cluster, an α particle, is sandwiched between the heavier
clusters (linear scenario) or lies above the line connecting the
two heavier nuclei (triangular scenario).

We showed that the rotational bands are strongly compressed,
the distance between states within a level being of the order

of a few keV. The vibrational states are of the order of MeV,
implying a strong separation between rotational and vibrational
modes.

The compression of the rotational modes and the parity dou-
blets can be used as a signature to look for the formation of
three-cluster nuclear molecules. If one observes a transition line
from a vibrational mode to, e.g., the ground state band, then
it should split into a couple of lines (taking into account spin-
selection rules) only a few keV apart, demonstrating the large
extension of the system. With the observation of parity doublets,
this will indicate the formation of the nuclear molecule.

Additionally, the γ spectroscopy for heavy nuclear molecules
is feasible due to the fact that the deexcitation times of the ro-
tational states are ≤10−19 s which are very small compared to
the calculated lifetimes of α-accompanied cold ternary fission
which range in the interval 10−12–10−15 s.

The next step is to introduce the deformation. This has been
already done for the linear case in Reference 6. However in
the triangular case the geometric Hamiltonian gets very compli-
cated, especially the rotational part describing the relative mo-
tion of the center of masses. This is the reason to look to al-
gebraic models based on group theory. Recently we proposed
an algebraic model for dinuclear molecules (hypothetically en-
countered in binary cold fission) which includes also the inter-
nal structure of the two clusters.11 In this model each cluster
is described by the Elliott’s SU(3) model and the relative mo-
tion of the two clusters is given by the Iachello’s U(4) model in
the dynamical U(3) dynamical chain. Once this project will be
completed its extension to the three-cluster case will be straight-
forward.
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