The Ionic Radius of No³⁺

A. Bilewicz*

Department of Radiochemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland

Received: November 13, 2001; In Final Form: April 30, 2002

Nobelium (²⁵⁹No, $T_{1/2} = 58$ min) was produced in bombardment of ²⁴⁸Cm target with ¹⁸O⁵⁺ ions. Next, it was oxidised by H₅IO₆ and loaded together with lanthanide tracers on a chromatographic column filled with cryptomelane MnO₂. In the HNO₃ elution curve two peaks are observed. First one is related to the nonoxidized No²⁺ and the second corresponds to No³⁺ close to positions of elution peaks of Ho³⁺ and Y³⁺. The ionic radius deduced from the elution position of No³⁺ is to be 89.4 ± 0.7 pm.

1. Introduction

Studies of the heaviest actinides and comparison with the properties of lanthanides are interesting because they help to understand the influence of relativistic effects on the chemical properties. The relativistic effects influence the contraction of the 3+ lanthanides and actinides ionic radii by two ways: splitting of outermost *p* orbitals and stabilization of $p_{1/2}$ orbitals, and expanding the $f_{5/2}$ and $f_{7/2}$ orbitals which results in less effective shielding of the nuclear charge. For the heaviest actinides these might result in ionic radii different from non-relativistic effect is responsible for 8 pm contraction of the ionic radius, while for Er^{3+} only 2.5 pm. The determination of the ionic radius of No^{3+} ion is of key interest, particularly since the ionic radius of Lr^{3+} has been determined.¹ This measurement would conclude the ionic radius determinations of the 3+ actinide ions.

The ground state electronic configuration of nobelium is $[\text{Rn}]5f^{14}7s^2$. Energy of $5f_{7/2}$ orbitals in nobelium (-15.43 eV) is more negative than $4f_{7/2}$ orbitals in ytterbium (-14.67 eV) (homologue in lanthanide series) which causes that nobelium as the only one among f electron cations is very stable in the oxidation state 2+. The redox potential of the No²⁺/No³⁺ couple was determined to be $1.4 \pm 0.2 \text{ V}$.² This aspect of nobelium chemistry provides special problems for the determination of the No³⁺ ionic radius. In the determination experiment first No²⁺ must be oxidized to the No³⁺. This can be accomplished with the use of strong oxidizing agent such as KMnO₄ (1.5 V) or H₃IO₆ (1.7 V). The second problem is to stabilize in the 3+ oxidation state during the determination experiment.

Ionic radii are usually obtained from X-ray diffraction data for oxides or fluorides. However, these techniques require weighable quantities of the compound. Unfortunately, elements heavier than fermium are produced in quantities of few atoms at a time, so that experimental structural data for these elements are not available. The values of ionic radii for Md^{2+} , Md^{3+} , No^{2+} , and Lr^{3+} were determined only by chromatographic methods.^{1,3,4} The ionic radii of Md^{3+} and Lr^{3+} were determined by comparing their elution positions with the positions of rare earth tracers and of actinides of known ionic radii. The ionic radii of Md^{2+} and No^{2+} were determined by comparison with crystallographic radii of Ca^{2+} , Sr^{2+} , and Ba^{2+} (Ref. 3, 4).

For the determination of ionic radius of No^{3+} , Henderson⁵ used ion exchange chromatography with KMnO₄ and H₅IO₆ as oxidizing agents and α -HIB as eluent. Unfortunately, these strong oxidants decomposed both the α -HIB and the ion exchange resin and, therefore, the determination of No³⁺ ionic radius could not be accomplished using this approach.

In our laboratory, samples of cryptomelane-type MnO_2 inorganic ion exchanger were synthesized. This sorbent is known

to possess interesting ion exchange properties. The cryptomelane MnO₂ phase has a well-defined 2×2 tunnel-framed structure with exchangeable hydrogen, alkali, or alkali earth cations.⁶ The presence of exchangeable ions in the tunnels requires that some of the manganese atoms must be present in oxidation states lower than 4. The formulae could be represented by HMn₇^{IV}Mn^{III}O₁₆ as postulated by Tsuji and Tamaura.⁷ The average tunnel diameter is 0.28 nm so the selectivity of the sorbent is related to the steric effect in the tunnel structure.⁸ Cryptomelane MnO₂ has been demonstrated to show excellent ionexchange selectivity towards cations with crystal ionic radii of 130–150 pm, e.g. K^+ , NH_4^+ , Ba^{2+} , and Ra^{2+} (Ref. 6–8). For 3+ lanthanides and actinides the distribution coefficients are much lower, but strongly depend on the radius of cations. Additionally, in acidic solutions the sorbent exhibits both ion exchange and strong oxidizing properties, so No³⁺ should be stabilized in cryptomelane MnO₂ phase. In the present work, cryptomelanetype MnO₂ is used for the determination of No³⁺ ionic radius by chromatographic methods.

2. Experimental

2.1. Synthesis of Cryptomelane Manganese Dioxide. Manganese dioxide samples were synthesized according to the procedure used by Tsuji and Abe.⁹ The precipitates were obtained by adding 250 cm³ of 0.5 M KMnO₄ in 1 M H₂SO₄ to 250 cm³ of 1 M MnSO₄ solution containing 1 M of H₂SO₄ at 60 °C. The precipitates were then aged overnight, filtered, and washed with water. The product was dried at ca 70 °C for three days, and then ground and sieved. The samples were transformed to the H⁺ form by percolating 6 M HNO₃ solution.

2.2. Radioactive Tracers. The radionuclides of ⁸⁹Sr, ⁴⁶Ca, ⁹⁰Y, ¹⁷⁷Lu, ¹⁶⁹Yb, ¹⁷⁰Tm, ^{166m}Ho, ¹⁵²Eu, and ²⁴¹Am were purchased from Isotope Products in Swierk, Poland. All tracers were stored in 6 M HNO₃ solutions to prevent them from hydrolysis.

2.3. Production of ²⁵⁹No. The ²⁵⁹No ($T_{1/2} = 58 \text{ min}$) atoms were obtained by ¹⁸O irradiation of ²⁴⁸Cm target in reaction:

248
Cm $(^{18}$ O, $\alpha 3n)^{259}$ No. (1)

The experiments were carried out at Philips cyclotron at the Paul Scherrer Institute, Villigen (Switzerland). Target of 0.730 mg·cm⁻² ²⁴⁸Cm was irradiated for 2.5 h with ¹⁸O⁵⁺ ions. The beam energy on target was 99 MeV, and the beam intensity was 1×10^{12} particles per second. Under these conditions, ²⁵⁹No is produced with the cross section of about 30 nb. The target contained 10% of Gd thus producing simultaneously ^{165,167}Yb and ^{165,167}Lu. The reaction products recoiling out from the target were stopped in He gas and transported to the chemistry collection site by a KCl aerosol-seeded gas-jet system. The aerosol with reaction products was collected on a glass filter.

^{*}E-mail: abilewic@orange.ichtj.waw.pl. FAX: ++48 228111532.

Figure 1. Dependence of logarithm of distribution coefficient on reciprocal crystal ionic radius for lanthanides, yttrium, and americium.

2.4. Chromatographic Procedure. A small glass column (3 mm × 5 cm) was filled with 0.5 g cryptomelane MnO₂ (0.01–0.05 mm) and preconditioned with solution of HNO₃. The lanthanides and americium tracers were dissolved in 0.5 M HNO₃, evaporated, and dissolved in 20 μ L of 0.5 M HNO₃ and 0.05 M H₃IO₆. Next, the solution was placed on the top of the column. The radionuclides were subsequently eluted from the column with 0.5 M HNO₃ solution at a flow rate of 0.1 cm³min⁻¹. Drop fractions from the column were collected and measured by γ spectrometry or by liquid scintillation counting (⁴⁶Ca, ⁹⁰Y).

The same chromatographic procedure was used in nobelium experiments. The aerosol, together with the reaction products, was dissolved in 2 cm³ of 0.5 M HNO₃, evaporated, and dissolved in 20 μ L of 0.5 M HNO₃ and 0.05 M H₅IO₆. The drops from the column were collected on stainless steel disc and evaporated on a hot plate. After evaporation the samples were inserted into the detector array for α spectroscopy, consisting 6 Si(Au)-surface barrier detectors, for 2.5 h measurement. The α events, together with the detector numbers and the associated time, were recorded. Spontaneous fission events were also recorded. Before α measurement the γ activity was measured by Ge(Li) detector for 1 min. The whole procedure, from the end of bombardment until the start of α spectroscopy, lasted about 40 min. The distribution coefficient (*K_d*) between two phases in

Figure 2. Alpha particle spectrum of the elution fractions containing 259 No.

Figure 3. Sum of the elution curves from the experiments where ²⁵⁹No was detected.

chromatographic system is defined as:

$$K_d = \frac{V_m - V_f}{V_s} \tag{2}$$

where V_m and V_s are the volumes of the mobile and the stationary phase, respectively, and V_f is the free column volume.

3. Results

The selectivity for the cations on cryptomelane MnO_2 strongly depends on the ionic radii of the exchanged cations. Because the diameter of the tunnel in the MnO₂ phase (280 pm) is similar to diameters of the metal cations, the selectivity of the sorbent is associated with the steric effect. The hydrated 3+ metal cations with diameter much larger than 280 pm must be dehydrated before entering the ion exchange phase. Therefore, the selectivity of the cyptomelane MnO₂ depends linearly on free energy of hydration,¹⁰ which is also linearly related to the reciprocal of crystal ionic radius. The linearity of $\log K_d$ on ionic radii for f electron cations was also found by Tsuji et al.¹¹ There are numerous data for ionic radii of the cations. The values commonly used are Shannon radii.¹² In case of heaviest actinides (Es³⁺, Fm³⁺, Md³⁺, and Lr³⁺) all available experimental ionic radii are given in the Templeton and Dauben¹³ scale. In order to allow comparison we also used the Templeton and Dauben scale to present the ionic radii of the lanthanides and actinides cations studied. As mentioned earlier¹ it is known that the coordination number (CN) for the heavy trivalent lanthanides and actinides is 8. Although there is no experimental data on the CN of Md^{3+} , No^{3+} , and Lr^{3+} , it is assumed that CN is also 8. Then, the $\log K_d$ vs. (1/r) should be linear for the respective cations. A plot of $\log K_d$ versus reciprocal crystal ionic radius for lanthanides, yttrium, and americium is shown in Figure 1. There is a good linear correlation for all the cations studied. The chromatographic columns calibrated previously for lanthanides tracers were used in experiments with nobelium. We performed 11 accumulation and chromatographic cycles during which we observed the decay of 22 atoms of ²⁵⁹No. In Figure 2, the sum α spectra of all No fractions obtained in the elution processes are given. The analysis of ²⁵⁹No α spectra is difficult since its α branch consists of five lines covering the energy range from 7.455 to 7.685 MeV.¹⁴ The possible interference is only from ²⁵⁰Fm (7.390 and 7.430 MeV). Other possible interfering nuclides decayed within experimental time (40 min). Taking into account the FWHM of the α spectra (25 keV) and the possible interference at 7.430 MeV, the events in the range 7.460-7.690 MeV were considered. From the γ -spectroscopy measurement the elution positions of ^{165,167}Yb and ^{165,167}Lu, produced in the natGd + 18O reaction, were obtained to make sure that the column behaved as in the calibration runs, and to give markers in the elution so that all elutions could be compared on the same basis. During synthesis of ²⁵⁹No also Fm, Es, and Cf nuclides were produced as transfer products. In collected fractions maximum of ²⁵⁰Cf activity was found near Eu³⁺ fraction and ²⁵⁵Fm

close to Dy^{3+} so the elution positions of actinides are consistent with the elution positions of respective lanthanides.

The sum of the elution curves from the experiments where ²⁵⁹No was detected is presented in Figure 3. The elution curve is presented in the K_d scale because V_f and V_s of the column were not identical. As shown in the Figure 3 two maxima are observed. First - small one is probably related to the nonoxidized No^{2+} because it is seen between the fractions where cations Ca^{2+} and Sr^{2+} are eluted. The value of No^{2+} radius (105 pm) is between radii of the Ca²⁺ (100 pm) and Sr²⁺ (118 pm). The second maximum corresponds to No³⁺ and is eluted near the fraction where Ho^{3+} and Y^{3+} are eluted. The logarithm of distribution coefficient of No³⁺ was converted to an ionic radius from the slope and intercept of the line, yielding 89.4 ± 0.7 pm in Templeton and Dauben scale or 90.0 ± 0.7 pm in Shannon scale. The error limits on radius value represent the uncertainty in the elution positions as measured from separate experiments and the distribution of the observed No data points. Unfortunately, the uncertainty in the determination of No³⁺ radius is much larger than the error of determination in the case of Md^{3+} and Lr^{3+} radii $(\pm 0.1 \text{ pm})$.¹ This results from the slower kinetics observed on the cryptomelane MnO₂ than on the ion exchange resin as well as from the lower selectivity of cryptomelane MnO₂ to M³⁺ cations compared to the selectivity of complexation with α -HIB. The No³⁺ radius value determined lies between radii of Md³⁺ and Lr^{3+} , closer to that of Md^{3+} .

Acknowledgement. The author likes to thank A. Türler, S. Hübner, B. Eichler, R. Eichler, S. Yakushev, B. Wlodzimirska, and K.Zuchowska for their advise and assistance in the experiments. The research was supported by the grant from the State Committee for Scientific Research of Poland nr. 7T 09A 073 20.

References

- (1) W. Brüchle, M. Schädel, U. W. Scherer, J. V. Kratz, K. E. Gregorich, D. M. Lee, M. J. Nurmia, R. M. Chasteler, H. L. Hall, R. A. Henderson, and D. C. Hoffman, Inorg. Chim. Acta 146, 267 (1988).
- (2) R. J. Silva, T. Sikkeland, M. Nurmia, A. Ghiorso, and E. K. Hulet, J. Inorg. Nucl. Chem. **31**, 3405 (1969).
- (3) R. J. Silva, W. J. McDowell, O. L. Keller, and J. R. Tarrant, Inorg. Chem. 13, 3405 (1969).
- (4) L. I. Gusieva, G. S. Tikhomirova, G. V. Buklanov, Zen Zin Phar, I. A. Lebedev, N. V. Katargin, and B. F. Myasoedov, J. Radioanal. Nucl. Chem. (Lett.) **117**, 205 (1987).
- (5) R. A. Henderson, LBL-29568 (1990).
- (6) M. Tsuji, S. Komarneni, and M. Abe, Solvent Extr. Ion Exch. **11**, 143 (1993).
- (7) M. Tsuji and Y. Tamaura, Solvent Extr. Ion Exch. 18, 187 (2000).
- (8) B. Bartoś, A. Bilewicz, R. Delmas, and C. Neskovic, Solvent Extr. Ion Exch. 15, 533 (1997).
- (9) M. Tsuji and M. Abe, Solvent Extr. Ion Exch. 2, 253 (1984).
- (10) R. Reichenberg, *Ion Exchange Selectivity, in Ion Exchange Ed., vol. 1*, edited by J. Marinsky (Marcel Dekker Inc, New York, 1966).
- (11) M. Tsuji, H. Kaneko, M. Abe, Y. Morita, and M. Kubota, Radiochim. Acta 69, 93 (1993).
- (12) R. D. Shannon, Acta Crystallorg. A 32, 751 (1976).
- (13) D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc. **76**, 5237 (1954).
- (14) W. Westmeier and A. Merklin, *Catalog of Alpha Particles from Radioactive Decay* (Fachinformationszentrum Karlsruhe, 1985).