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A Relativistic Point Coupling Model for Nuclear Structure Calculations
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A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using
various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism
is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock
approximations. Different fitting strategies for the determination of the parameters have been applied and the quality
of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field
approaches both formally and in the context of applications to ground-state properties of known and superheavy
nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order
Fierz transformation are discussed briefly.

1. Introduction

Relativistic mean field (RMF) models are quite successful in
describing ground state properties of finite nuclei and nuclear
matter properties. They describe the nucleus as a system of
Dirac nucleons that interact in a relativistic covariant manner via
mean meson fields (for a review see Reference 1) or via mean
nucleon fields2,3 whose explicit forms sometimes derive solely
from the meson field approaches.4 The meson fields are of finite
range (FR) due to meson exchange whereas the nucleon fields
are of zero range (contact interactions or point couplings PC) to-
gether with derivative terms that simulate finite interaction range
to some extent.

In this work we use mean nucleon fields constructed with
contact interactions (point couplings) to represent the system
of interacting Dirac nucleons. We choose this approach for the
following reasons: (a) possible physical constraints introduced
by explicit use of the Klein-Gordon approximation to describe
mean meson fields, in particular that of the (fictitious) sigma
meson, are avoided and instead the effects of the various incom-
pletely understood and higher order processes are assumed to
be lumped into appropriate coupling constants and terms of the
Lagrangian, as explained in Reference 2, (b) the use of point
couplings allows not only (standard) relativistic Hartree calcu-
lations to be performed, but also relativistic Hartree-Fock cal-
culations5,6 by use of Fierz relations (up to fourth order7), and
(c) the use of point couplings, because of their success in the
Nambu-Jona-Lasino model for the low-momentum domain of
QCD,8 is perhaps the best way to test for naturalness of the cou-
pling constants in the seminal Weinberg expansion9 highlighting
the role of power counting and chiral symmetry in weakening N-
body forces. That is, two-nucleon forces are stronger than three-
nucleon forces, which are stronger than four-nucleon forces,
..., resulting in a sequence making nuclear physics tractable.
If the dimensionless coupling constants of the corresponding
Lagrangian are of order 1 (natural) then QCD scaling and chi-
ral symmetry apply to finite nuclei. Finally, (d), the RMF-PC
model allows one to investigate its relationship to nonrelativistic
point-coupling approaches like the Skyrme-Hartree-Fock (SHF)
approach and the RMF-FR approach to contrast the importance
and roles of the different features these models have, as well as
to obtain new insights.

It is important to note here that one can also view RMF-PC as
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an approach that lies in between the RMF-FR approach and the
nonrelativistic Skyrme-Hartree-Fock (SHF) approach which is
also a well-developed self-consistent mean-field model that per-
forms very well (for a review see Reference 10). Whereas SHF
is based upon density-dependent contact interactions with exten-
sions to gradient terms, kinetic terms, and the spin-orbit interac-
tion, RMF-FR is based upon a coupled field theory of Dirac nu-
cleons and effective meson fields treated at the mean-field level,
where density dependence is modeled by nonlinear meson self
couplings and the role of gradient terms is taken over by the fi-
nite ranges of the mesons. The kinetic and spin-orbit terms are
automatically carried in both RMF models.1 Thus, a compari-
son of RMF-PC and SHF addresses the differences between in-
medium Dirac and Schrödinger nucleons, that is, in kinetic and
spin-orbit components, whereas a comparison of RMF-PC and
RMF-FR addresses the absence vs. presence of finite range and
the different treatments of density dependence. Herein we will
perform these comparisons using precisely the same fitting strat-
egy as in recent SHF and RMF-FR adjustments11–13 except that
here we will in addition be guided by considerations of QCD
scaling and chiral symmetry, that is, naturalness.

In this paper we will present a new fit of the parameters, the
application to superheavy nuclei together with a study of the
spin-orbit force, which plays an essential role in that region. For
more details, see Reference 14.

2. The Model

2.1. The Lagrangian. The elementary building blocks of
the point-coupling vertices are two-fermion terms of the general
type

(ψ̄OτΓψ), Oτ ∈ {1,τi}, Γ ∈ {1,γµ,γ5,γ5γµ,σµν} (1)

with ψ the nucleon field, τi the isospin matrices and Γ one of the
4× 4 Dirac matrices. There thus is a total of 10 such building
blocks characterized by their transformation character in isospin
and in spacetime.

The interactions are then obtained as products of such expres-
sions to a given order. The products are coupled, of course, to a
total isoscalar-scalar term. By “order” we mean the number of
such terms in a product, so that a second-order term corresponds
to a four-fermion coupling, and so on. In second order only the
ten elementary currents squared and contracted to scalars may
contribute, but at higher orders there is a proliferation of terms
because of the various possible intermediate couplings.
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In analogy to the nonrelativistic Skyrme-force models, one
goes one step beyond zero range and complements the point-
coupling model by derivative terms in the Lagrangian, as e.g.
∂νψ̄�τiΓµ

j ψ. The derivative is understood to act on both ψ̄ and ψ.
In the present work we consider the following four-fermion

vertices: isoscalar-scalar, (ψ̄ψ)2 corresponding to the σ-field,
isoscalar-vector, (ψ̄γµψ)(ψ̄γµψ) corresponding to the ω-field,
and isovector-vector, (ψ̄�τγµψ) · (ψ̄�τγµψ), corresponding to the
ρ-field, together with their corresponding gradient couplings
∂ν(...)∂ν(...).

These constitute a complete set of second-order scalar and
vector currents whose coupling strengths in the corresponding
Lagrangian we wish to test for naturalness. We neglect all ten-
sor couplings in the present work because they have had little ef-
fect in corresponding RMF-FR calculations.1 Finally, the pseu-
doscalar channel (π-meson) is not included here because it does
not contribute at the Hartree level.

Given the vast number of possible higher-order terms we be-
gin with those that have already been demonstrated to be of
use in the existing calculations with the RMF-FR and RMF-
PC approaches. These are the familiar nonlinear terms in the
scalar coupling, (ψ̄ψ)3 and (ψ̄ψ)4, as well as a nonlinear vector
term [(ψ̄γµψ)(ψ̄γµψ)]2 as used in some RMF-FR15 and RMF-
PC2 models. Finally, of course, the electromagnetic field and
the free Lagrangian of the nucleon field must be included.

Combining all of these terms, we obtain the Lagrangian of
the point-coupling model as

L = Lfree +L4f +Lhot +Lder +Lem,

Lfree = ψ̄(iγµ∂µ −m)ψ,

L4f = −1
2

αS(ψ̄ψ)(ψ̄ψ)− 1
2

αV(ψ̄γµψ)(ψ̄γµψ)

−1
2

αTV(ψ̄�τγµψ) · (ψ̄�τγµψ),

Lhot = −1
3

βS(ψ̄ψ)3 − 1
4

γS(ψ̄ψ)4 − 1
4

γV[(ψ̄γµψ)(ψ̄γµψ)]2,

Lder = −1
2

δS(∂νψ̄ψ)(∂νψ̄ψ)− 1
2

δV(∂νψ̄γµψ)(∂νψ̄γµψ)

−1
2

δTV(∂νψ̄�τγµψ) · (∂νψ̄�τγµψ),

Lem = −eAµψ̄[(1− τ3)/2]γµψ− 1
4

FµνFµν. (2)

Note that we use the nuclear physics convention for the isospin
where the neutron is associated with τ3 = +1 and the proton
τ3 = −1.

As it stands this Lagrangian contains the nine coupling con-
stants αS, αV, αTV, βS, γS, γV, δS, δV, and δTV. The subscripts
indicate the symmetry of the coupling: “S” stands for scalar,
“V” for vector, and “T” for isovector, while the symbols refer
to the additional distinctions: α refers to four-fermion terms, δ
to derivative couplings, and β and γ to third- and fourth order
terms, respectively.

The model thus contains one or two free parameters more
than analogous RMF-FR models. This happens because most
RMF-FR models make the tacit assumption that the masses in
the ω- and ρ-field can be frozen at the experimental values of
the really existing mesons. The assumption is justified to the
extent that the actual fits to observables are not overly sensitive
to these masses. In the RMF-PC model, however, experience
will still have to show whether the derivative-term coefficients
can be eliminated in a similar way, so that for the present work
all parameters are regarded as adjustable.

Similar to the RMF-FR approach, we consider the RMF-PC
approach as an effective Lagrangian for nuclear mean-field cal-
culations at the Hartree level without anti-nucleon states (no-sea
approximation), and include pairing and center-of-mass correc-
tions in the standard way.16,17

2.2. Coupling Constants. In addition to the older
parametrization PC-LA2 that was based on a relatively small
set of data and partly relied on naturalness of the parameters to
restrict their freedom, we also fitted a new parameter set for the
version of the model given in eq 2. The parameters are fitted in
the same way as NL-Z2.18 The set of nine coupling constants
emerging from the fitting procedure with the lowest value of
χ2 is called PC-F1, and its performance is compared to that of
NL-Z2 in Figure 1.

Comparing the average errors between PC-F1 and NL-Z2, we
see slightly different trends. NL-Z2 is superior with respect to
binding energies and surface thicknesses. It does, however, per-
form less brilliantly concerning radii. The total χ2 of NL-Z2
is 132.7 which is 34% larger than that for PC-F1. The overall
performance of the point-coupling thus seems to be a bit better,
although the difference is not dramatic.

Since we know that spin-orbit coupling is crucial for super-
heavy elements,18 we show in Figure 2 the relative errors for
a selection of spin-orbit splittings in 16O, 132Sn, and 208Pb. We
have taken care to choose splittings which can be deduced reli-
ably from spectra of neighbouring odd nuclei.19 All RMF forces,
except for PC-LA, perform very well. We see now that the well
fitted point coupling model PC-F1 does as well as finite range
RMF. The ability to describe the spin-orbit force correctly is
thus a feature of the relativistic approach. The force PC-LA
falls clearly below the others. The poor performance is related
to the too weak fields at large densities. The example demon-
strates that one needs a sufficiently large set of observables to
pin down the nuclear mean field sufficiently well.

The three well performing models all have very similar spin-
orbit potentials whereas PC-LA has one 10% stronger which
is shifted a little bit to larger radii. This difference yields the
observed mismatch in the spin-orbit splittings.

2.3. Superheavy Elements. The upper panel of Figure 3
shows the relative errors in binding energies for the heaviest
even-even nuclei with known experimental masses (compare
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Figure 1. Errors in percent for the observables binding energy, diffrac-
tion radius, surface thickness, and rms charge radius for PC-F1 (filled
diamonds) and NL-Z2 (open squares) are seen on the left. The right
panels show the absolute mean errors for the corresponding observ-
ables, where the dashed lines indicate the chosen relative errors ∆O in
the fitting procedure.
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Figure 2. The percentage error in ls-splittings for protons (left) and for neutrons (right). The experimental errors are smaller than the size of the
symbols used in these figures. The lines serve to guide the eye.

144 148 152 156

-0.4

-0.2

0.0

0.2

0.4

E
[%

]

Z = 98

144 148 152 156

Z = 100

148 152 156

Z = 102

152

Z = 104

154

Z = 106

156

Z = 108

NL3
NL-Z2
PC-LA
PC-F1

Neutron Number N

144 148 152 156
0.24

0.26

0.28

0.3

0.32

2

144 148 152 156 148 152 156 152 154 156

Figure 3. Deviation in % of the calculated energies from the experimental values (upper figure) and ground-state deformations (lower figure) in
axially deformed and reflection symmetric calculations. The errors for the binding energies are smaller than the size of the symbols used in this figure.
The symbol with error bars indicates the measured ground-state deformation together with its uncertainty of 254No (Ref. 22,23).

with a similar figure in Reference 20). The lower panel de-
livers as complementing information the ground-state deforma-
tions expressed in terms of the dimensionless quadrupole defor-
mation β2. The calculations were performed allowing axially
symmetric deformation assuming reflection-symmetric shapes.
The agreement is remarkable. All forces (with some excep-
tions for PC-LA) produce only small deviations which stay well
within the given error band. This is a gratifying surprise be-
cause we are here 40–50 mass units above the largest nucleus
included in the fit. It is to be noted that most SHF forces do not
perform so well and have general tendency to underbinding for
superheavy nuclei.20 There are also (small but) systematic dif-
ferences between the RMF models. NL321 generally overbinds
a little while NL-Z2 and PC-F1 tend to underbind. All forces
show yet unresolved isovector trends. The increase of the bind-
ing energy with increasing neutron number is too small. These
trends are already apparent for known nuclei (details for PC-F1
not shown in this paper). The reasons for all these trends are not
yet understood. Finally, mind the kinks visible for the Z = 98

and Z = 100 isotopes at neutron number N = 152 which hint at a
small (deformed) shell closure there.

All forces predict strong prolate ground-state deformations
for these superheavy nuclei (β2 ≈ 0.26–0.31). The trends look
similar for all forces. The largest deformations appear at N = 148
and/or N = 150. But there are systematic differences in detail:
NL-Z2 has always larger ground-state deformations than the
other forces, while PC-F1, PC-LA, and NL3 show much similar
deformations. The difference is probably related to the surface
energy: NL-Z2 has a lower surface energy than NL3. The sym-
bol with error bars at Z/N = 102/152 in Figure 3 corresponds to
the measured ground-state deformation of 254No (Ref. 22, 23).
This deformation is overestimated by all forces, PC-LA and
NL3 stay within the error bars, though. The error ranges from 6
to 13% which is still acceptable.

The prediction of new magic shell closures in superheavy el-
ements varies amongst the mean field models.24 For protons one
has a competition between Z = 114, 120, and 126. For neutrons
one finds N = 172 and 184. The finite-range RMF models agree
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in predicting a doubly magic 292120172. Precisely the same re-
sult emerges from PC-F1. This doubly magic nucleus is thus a
common feature of relativistic models. For the density profile
of 292120172, we observe a central depression in accordance with
other mean-field approaches.18,25,26

In deformed calculations done in the way as described in Ref-
erence 20, we obtain, again in agreement with other relativistic
models, deformed shell closures at Z = 104 for the protons and
N = 162 for the neutrons. The nuclei in that region of the nuclear
chart have deformations with β2 ≈ 0.2–0.3. Thus also in the de-
formed case, these different types of RMF models agree well
concerning their predictions of shell structure for superheavy el-
ements.

3. Summary and Prospects

In summary one may thus conclude that the use of relativis-
tic point-coupling models produces results of similar quality as
the finite-range ones, even regarding the surface properties, with
differences, of course, noticeable in the details. It should be
noted that larger differences appear in quantities not discussed
here, such as the density distributions. While this does not lead
to new conclusions for superheavy nuclei at this moment, this
model opens the way to valuable new insights for two reasons:

(1) It can be expanded to include a full treatment of exchange
terms. In recent work7 we have shown that it is possible to
generalize the Fierz transformation to higher-order terms, allow-
ing the reformulation of the exchange contributions in terms of
densities and currents. Although the expressions arising in this
way are quite complicated, their numerical evaluation should be
straightforward.

(2) The examination of naturalness of the coupling constants
may be a helpful way to make fits more unique. Following
Manohar and Georgi27 we can scale a generic Lagrangian term
of the physical series as

L ∼−clmn

[
ψψ
f 2
π Λ

]l[
�π
fπ

]m[
∂µ,mπ

Λ

]n

f 2
π Λ2 , (3)

where ψ and �π are nucleon and pion fields, respectively, fπ

and mπ are the pion decay constant, 92.5 MeV, and pion mass,
139.6 MeV, respectively, Λ = 770 MeV is the ρ meson mass,
and (∂µ, mπ) signifies either a derivative or a power of the pion
mass. Dirac matrices and isospin operators (we use �t here
rather than�τ) have been ignored. Chiral symmetry demands28

∆ = l+n−2≥ 0, such that the series contains only positive pow-
ers of (1/Λ). If the theory is natural,27,29 the Lagrangian should
lead to dimensionless coefficients clmn of order unity. Thus, all
information on scales ultimately resides in the clmn. If they are
natural, QCD scaling works.

The nine QCD-scaled coupling constants of the parameter set
used in this paper turn out to be all natural. So far as we are
aware, this is the first complete set of natural QCD-scaled cou-
pling constants, with order up to Λ−2, that has been obtained
with unconstrained least-squares parameter adjustment to mea-
sured ground-state observables.

The main problem with this type of effective field theory
has been the unambiguous extraction of the coupling constants,
where changing one affects the contributions from all the oth-
ers, making it difficult to judge the physical appropriateness of
the corresponding interaction terms of the Lagrangian. The nat-
uralness of the coupling constants, however, appears to provide
an additional physical constraint that substantially reduces these
ambiguities. Furthermore, this physical constraint derives from
low-momentum QCD scaling and chiral symmetry.
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