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Structure of Nuclei in Strong Magnetic Fields
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The structure of nuclei in ultrastrong magnetic fields relevant for supernovas and neutron stars is considered. The
dependence of shell-correction energy on magnetic field is analyzed and systemized by employing the shell model
with spherical harmonic oscillator confining potential.

1. Introduction

The astrophysical environment can affect significantly prop-
erties of nuclides. In particular, the structure of nuclei can
be dramatically modified1 by ultrastrong magnetic fields lead-
ing, e.g., to a shift of nuclear magic numbers. The related
field strengths B∼ 1015–1017 G correspond to a flux Φ0 ∼ h̄c/πe
through an area covered by the size of nuclei and can be met,
e.g., in supernovas and neutron stars. Many observations, like
short bright outbursts of soft gamma repeaters (SGRs)2,3 and
rapid braking of relatively slowly rotating stars associated with
SGRs4,5 and anomalous X-ray pulsars (AXPs),6,7 provide evi-
dences in support of such ‘magnetar’ concept8–10 implying ultra-
magnetized stellar media with fields of a strength ranging up to
B∼ 1017.5 G. Consequently, the nuclear synthesis in the vicinity
of supernova core can be noticeably affected by the magnetic
field of respective nascent neutron star. Such transformations
of nuclide structure can play an important role also in magneto-
transport of neutron star crusts11 and contribute to some specific
features of magnetic emission, like soft gamma-ray bursts.12

The inhomogeneous (crusty) nuclear matter at densities D
less than the saturation density Ds has been extensively stud-
ied theoretically (cf. References 13–17 and references therein).
The outer crusts is viewed to be composed from well separated
nuclei with the largest binding energy. The shell closure in iron
region determines such a bottom of fusion and fission valleys in
laboratory.18 With increasing nuclear density large mass magic
numbers grow in importance, so that the nucleon aggregates of
masses matching the superheavy sector might be expected to
be naturally abundant in crust inner regions.16,17 The star ac-
tivity related to a change of nuclear structure in, e.g., evolving
magnetic fields can be employed, indeed, to probe properties of
nuclei as well as crust magnetodynamics.

In this contribution we analyze general features of the field
induced modification of the shell effect for large mass nuclei.
In sect. 2 we briefly recall mean-field treatment applied for the
description of nuclear magnetism and systemize the properties
of spin- and orbital magnetic response of neutrons and protons.
The conclusions are in sect. 3.

2. Magnetism of Nuclei within the Shell Model

As demonstrated by Kondratyev et al.1 thermodynamic for-
malism within the non-relativistic mean-field treatment consti-
tutes useful framework for an analysis of the nuclide reactivity
in magnetic fields of interest. Relativistic effects become im-
portant at considerably larger field strengths when the energy
of the first Landau level ωL = µNB (with the nuclear magne-
ton µN) becomes comparable to the nucleon rest mass. The
magnitude of the respective limiting field for nucleons BN

rel =
mpc2/2µN ≈ 1.5×1020 G corresponds to a flux Φ0 = h̄c/πe
through the area of a radius given by the nucleon Compton
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wavelength λN = h̄/(mpc) ≈ 0.21 fm. These fields may affect,
e.g., conditions of β-equilibrium of the neutron star bulk mat-
ter.19

Within the Hartree mean-field treatment (see, e.g., Refer-
ences 1, 20, 21) the nuclear structure is described in terms of
the filled up to the Fermi energy εF single-particle (sp) levels εζ,
which determine the properties of N =

R εF
−∞ dε ρ(ε) nucleons.

Decomposing the sp level density ρ(ε) = ∑ζ δ(ε−εζ) = ρsm +δρ
into smooth ρsm and oscillating δρ components we express the
energy of a nucleus as

E =
Z εF

−∞
dε ερ(ε) = E sm +δEn +δEp , (1)

where the Thomas-Fermi (i.e. semi-classical) component Esm is
only slightly affected by magnetic fields due to the Bohr-van
Leeuwen theorem.22 The leading field effect is connected with
shell-correction contributions1,23 of neutrons δEn and protons
δEp to nuclear masses which are related to the oscillating part
δρ.

Great success in the understanding of many properties of sta-
ble nuclei is associated with the Nilsson model (NM) (cf. e.g.
References 20, 21) which is based on the Harmonic Oscillator
(HO) confining potential approximation for the nuclear mean-
field. In present study we consider the simple spherical HO
Hamiltonian yielding the equidistant sp spectrum

εn = (n+3/2) (2)

corresponding to principal quantum numbers n with level de-
generacies (n + 1)(n + 2), and measured in units of the HO
frequency ω0. For nuclei in vicinity of stability line ω0 ≈
41/A1/3 MeV, while neutron rich nuclei of crust inner region
correspond to significantly smaller level spacing. Consequently,
such a picture of HO confinement might provide reliable de-
scription of inner crust nuclides with considerably suppressed
spin-orbit (s-o) coupling.14,15

2.1. Pauli-spin Magnetization. The interaction of mag-
netic field with nucleon-spin-dipole magnetic moment leads to
an additional term in the energy spectra

δεi = σi∆α , ∆α = gαb/2 (3)

with the g-factor gα, and reduced field strength b = ωL/ω0. Such
a term contributes to sp energies of both protons α = p, and neu-
trons α = n, and gives rise to a relative shift down and up (see
Figure 1b) of energy levels with the nucleon spin-magnetic mo-
ment directed along the field (σi=↑ = −1, majority-spin levels)
and in the opposite direction (σi=↓ = 1, minority-spin levels),
respectively. The shift, eq 3, is related to the Pauli-type of the
magnetic response and modifies the shell-correction energy as

δEα = δE↑
α (εF +∆α)+δE↓

α (εF −∆α) , (4)

where δEi
α is determined by the unshifted sp spectrum (see

eq 1, 2).
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The spin magnetization represents predominant effect in the
magnetic field dependence of the neutron shell-correction en-
ergy and leads to a phase-shift of shell-oscillations.1 This be-
havior is caused by the field dependent interference of contri-
butions coming from the majority- and minority-spin neutrons
to the total energy. As illustrated in Figure 1a such an interfer-
ence gives rise to oscillations of the shell-energy as a function
of magnetic field strength with a period bs ≈ 0.5. Figure 1b in-
dicates that for nearly stable nuclei the respective magnetic field
Bs ∼ω0/µN ∼ 1016–1017 G induces the relative shift ∆n, eq 3,
of neutron majority- and minority-spin energy levels which is
comparable to the energy difference between major shells given
by the HO frequency ω0. In particular, at field strengths corre-
sponding to the region near b ≈ |2gn|−1 ≈ 0.26 the level spacing
and the degeneracies are decreased resulting in a suppression of
the shell effect as compared to the values related to level cross-
ings, bcr = |k/gn| with an integer k.

At zero-field the pronounced minima are displayed at neutron
numbers, N0

m = 8, 20, 40, 70, 112, 168, ..., associated with closed
shells, as extensively discussed in, e.g., Reference 20. In the
case of b ≈ |1/gn| the level spacing and the shell-oscillation am-
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Figure 1. (a) Spherical HO model prediction of the neutron shell-
correction energy versus the neutron number N and the parameter b.
Smaller energies are indicated by white regions, while the dark regions
denote larger energies. The contours are plotted with the step 0.5 start-
ing from −1.5 for the quantity δEn · 8π4/(ω0X2). The thick solid lines
are related to the relationship eq 5. (b) The dependence of the majority-
(solid lines) and minority-spin (dashed lines) energy level on the mag-
netic field. The energy and the field are measured in the units of the HO
level spacing ω0 and [ω0/gnµN], respectively. The figures at the level
crossings (indicated by triangles) show the total nucleon number when
the levels are filled starting from the bottom. The level degeneracies are
displayed by the numbers attached to respective lines.

plitude are nearly the same as at b ≈ 0. However, as indicated in
Figure 1b level occupation numbers are rather different in these
two cases. Consequently, the positions of shell-energy minima
are replaced. At the field strength matching the first level cross-
ing the familiar spherical HO magic numbers are turned into
anti-magic, i.e. associated with positive maxima of the shell-
correction energy, while the open shell anti-magic numbers be-
come the closed shell magic numbers. For grand canonical en-
semble the field dependence of the shell energy minima can be
obtained from the condition of constant arguments in eq 4. This
yields an approximation

N±
m /N0

m ≈ (1∓gnb/2(3N0
m)1/3)3 , (5)

where ± corresponds to upper and lower valleys extending from
the respective zero-field magic numbers N0

m (see Figure 1a). As
evident from Figure 1a linear term dominates such a depen-
dence. We note that magic number of canonical ensemble devi-
ate from the case of grand canonical by about 1% and 5% at the
first and second level crossings, respectively.

The effect of a sign change in the shell-correction energy re-
mains when accounting for the spin-orbit interaction as well.1

Furthermore, the sign inversion occurs at the field strength that
is almost an order of magnitude smaller than the oscillation pe-
riod Bs (see above).

2.2. Orbital Magnetism. The interaction of magnetic field
with moving along the confined trajectory proton charge gives
rise to an additional modification of proton spectra which at
small field strengths b 
 1 reads

δεo ≈ bl3 , (6)

where l3 denotes the projection of the proton angular momen-
tum on the field axis. Switching off the Pauli response (i.e.
∆p = 0 in eq 4) the properties of the orbital magnetism can be
easily seen by employing the simplified expression for the shell-
correction energy at conditions of weak fields in the form (see
References 1,24)

δEi
o ≈−ω0X(X +1)

8π4 ∑
k=1

k−2 cos(kX) j0(bkX) , (7)
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Figure 2. Effect of orbital magnetism in the proton shell-correction
energy versus the proton number Z and the parameter b for the spherical
HO potential. The white regions display to the energy minima (i.e. the
wells), while the dark regions indicate the maxima (i.e. the hills) in the
shell-correction energy landscape. The contours are plotted with the
step 0.15 starting from −1 for the quantity δEp · (1+b/b0)8π4/(ω0X2),
where b0 = (4 ·901/3)−1 ≈ 0.056. Thick solid lines represent eq 9, while
dashed lines correspond to eq 8.
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where X = 2πεF/ω0 ≈ 2π(3N)1/3 counts the number of filled
shells in zero-field limit. The effect of orbital magnetism con-
sists, therefore, in a modulation of components for a nonper-
turbed spherical HO by the spherical Bessel function with the
field dependent argument. As indicated by eq 7 and illustrated
in Figure 2 the weak field leads to regular oscillations of the
shell-correction energy as a function of the field strength as well
as overall suppression the shell effect with increasing b at zero
s-o coupling. As seen in Figure 2 local maxima of the shell-
energy amplitude arise along the lines

Z p ≈ [(p+1/2)/2b]3/3 (8)

with an integer p. The shell-correction component vanishes
when in eq 8 p = k + 1/2 at integer k. Therefore, orbital mag-
netism yields the oscillation period bo ≈ X−1 ∼ A−1/3 corre-
sponding to the field strength Bo = ω0/µNX ∼ A−2/3. This es-
timate (cf. also Figure 2) yields a weaker field for heavier nuclei
in order to invert the sign of the proton shell-correction energy
as well as to wash out the shell-structure. The minima valleys in
shell-correction energy landscape follow the lines

Z±
m /Z0

m ≈ [(1∓bm)/(1∓b)]3 , bm = 1/(4(3Z0
m)1/3) , (9)

with a good accuracy up to the third oscillation.
2.3. Paramagnetism versus Orbital Magnetism of Protons

in Nuclei. The magnetic field dependence of the proton shell-
correction energy is given as a combination of the discussed in
sect. 2.1, Figure 1 and eq 4, Pauli-magnetism and the Landau-
type of orbital magnetism related to proton ballistic dynamics
(see Figure 2 and eq 6, 7). Switching on the spin-magnetic
response we obtain the proton shell-correction energy which
is shown in Figure 3 as a function of the proton number Z
and magnetic field strength b. As seen the damped oscilla-
tions of the shell energy correspond to the period bso decreas-
ing with the mass number similarly to a pure orbital magnetism.
The Pauli-type magnetization reduces, however, additionally the
field strength that is required to change the sign in the proton
shell-correction energy. The phase-shift on π (i.e. the reversed
sign) occurs at the parameter b which is considerably smaller
than the value 1/gp. The interplay between the Landau-type
and spin-magnetism gives rise to an extra-decrease of the period
of a sign oscillation. The relevant field strength is, therefore,
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Figure 3. Spherical HO model prediction for the magnetic field de-
pendent proton shell-correction energy when including spin and orbital
magnetization. The contours are the same as in Figure 2, while thick
solid lines are associated with eq 10.

smaller than the corresponding field for neutrons by a factor ex-
ceeding the ratio |gp/gn|. At the Fermi energy the respective
magnetic field shifts the proton majority- and minority-spin lev-
els on an energy (δεi +δεo) comparable to the HO level spacing
ω0. The energy of the first Landau level ωL is, however, by the
factor 6–7 smaller than the energy difference between the ma-
jor shells, while the radius of the proton cyclotron orbit is larger
than the radii of nuclei on approximately the same factor. Con-
sequently, Landau levels give almost no contribution to the mag-
netism of nuclei. The orbital magnetism in such a case is mainly
given by an interaction of the magnetic field with the magnetic
dipole arising from the quantum orbital motion of protons in-
side the nucleus. The orbital magnetic response of such an in-
homogeneous system is considerably amplified as compared to
the magnetism of a homogeneous liquid which originates from
the quantization of proton orbital motion in magnetic field. The
Landau levels are expected to contribute noticeably to the mag-
netic response when their and nuclear radii become comparable.
Corresponding field strength BL ∼ 1019 G.

As seen from the comparison of Figures 1, 2 and 3 the inter-
play between spin and orbital magnetic reactivities yields more
complicated proton shell-correction energy landscape as com-
pared to their independent responses in a field. In this case the
magnetic field evolution of the proton shell-energy valleys can
be guided by the lines

Z±
m /Z0

m ≈ (
[(1∓bm)/(1∓b)]±gpb/2(3Z0

m)1/3)3
(10)

which represent a combination of eq 5, but with proton g-factor
gp, and eq 9. As illustrated in Figure 3 the valleys display irreg-
ular shapes passing from upper to lower lines.

It is worthy to recall here that the presence of s-o interac-
tion leads, in addition, to an anomalous field dependence of the
proton shell-correction energy amplitude.1 The proton orbital
magnetism yields rather pronounced enhancement of the shell
effect. Especially, when the values of the parameter b are close
to the spin-orbit strength, the shell-oscillation amplitude can be
considerably amplified.

3. Conclusion

In summary, we have discussed an effect of ultrastrong mag-
netic fields on the structure of nuclei. As shown within the em-
ployed mean-field treatment such a field influence can be viewed
as a shift of nucleon energy levels which is governed by the pro-
jection of respective magnetic moments on the field axis. Mak-
ing use of the shell model with spherical HO confining poten-
tial we have analyzed common features of magnetic field de-
pendence of shell-correction energy and magic numbers. For
neutrons such effects entirely originate from the Pauli-type para-
magnetic response. As a consequence, for equidistant HO spec-
trum the neutron shell-correction energy displays almost peri-
odic behavior as a function of the magnetic field strength. As
seen within the considered model the field evolution of valleys
associated neutron magic numbers follow nearly straight lines
corresponding to eq 5.

The interplay between spin- and orbital-magnetism deter-
mines the proton magnetic response. As demonstrated at zero
spin-orbit interaction the Landau-type of orbital magnetic re-
sponse results in a dumped oscillations of the shell energy as a
function of magnetic field. The overall amplitude of shell oscil-
lations is inversely proportional to the magnetic field strength,
while the amplitude maxima arise at the fields given by eq 8.
The energy minima valleys associated with magic numbers fol-
low the lines associated with eq 9. The combination of spin-
and orbital magnetic response brings complicated shell correc-
tion energy landscape. The valleys of nuclear magics extend
attaching upper and lower lines of eq 10, repeatedly.

As a matter of fact, the nuclear level density represents an
important ingredient to the prediction of nuclear reaction cross
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sections.25 Therefore, our analysis indicates possible magnetic
field dependence of the nuclear reaction (e.g. s- and r-processes)
rates and, consequently, abundance of elements in, e.g., super-
nova remnants.

We note finally that similar shift of magic numbers can
show up in, e.g., atomic clusters. The scale of the respective
field strength for e.g. an alkaline cluster of Nac atoms Bac ∼
ε ac

F /(3Nac)1/3µB ∼ 109/(3Nac)1/3 G (with the Bohr magneton µB)
suggests a possibility for laboratory tests of the predicted phase-
shift of shell-oscillations.
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