A Kinetic Study on Ligand Substitution Reaction of *N*-Cyclohexyl-2-pyrrolidone for Triphenylphosphine in Trichlorooxorhenium(V) Complex

Nobuyoshi Koshino, Sanae Usui, Yoshio Iwai,[†] Tamás R. Varga,[‡] Shubhamoy Chowdhury, Attila C. Bényei,[§] Munetaka Iwamura,[†] and Yasuhisa Ikeda^{*}

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Received: July 31, 2005; In Final Form: September 30, 2005

The crystal structure of the ReOCl₃(PPh₃)(NCP) (PPh₃ = triphenylphosphine and NCP = *N*-cyclohexyl-2pyrrolidone) complex was determined by a single-crystal X-ray diffraction method. It was found that NCP coordinates to the *trans*-position of the oxo group, Re = O, and that the Re(V) center is in a distorted octahedral geometry. The equilibrium reaction of ReOCl₃(PPh₃)₂ + NCP \leftrightarrow ReOCl₃(PPh₃)(NCP) + PPh₃ was examined, and its equilibrium constant was determined as 0.33 ± 0.1 in CH₂Cl₂ at 25 °C. Kinetic studies were carried out for the forward and backward reactions, and revealed that the rate determining steps for the both reactions are dissociation of the coordinated ligand from the Re center. Taking into account of geometrical isomers of the ReOCl₃(PPh₃)₂ complex, a reaction mechanism was proposed.

1. Introduction

The wide use of 99mTc as diagnostic agents and the recent development of ¹⁸⁶Re and ¹⁸⁸Re radiopharmaceuticals have promoted studies for Tc and Re coordination chemistries.^{1, 2} It is known that ¹⁸⁶Re and ¹⁸⁸Re decay by β -ray emission as well as γ -ray emission. Therefore, ¹⁸⁶Re and ¹⁸⁸Re compounds should be used as diagnostic and therapeutic medicines.³ From this point of view, a number of Re complexes have been synthesized.⁴ In syntheses, $\text{ReOCl}_3(\text{PPh}_3)_2$ (PPh₃ = triphenylphosphine) is often used as a starting material.^{5, 6} Its molecular structure in solid state has been reported as a mer-trans geometry.⁷ However, it is also subjected that this kind of Re complexes have geometrical isomers, *i.e. mer-cis* and *fac-cis.*⁸ The ligand substitution behavior of this complex is not well understood so far. We have previously found out that N-cyclohexyl-2-pyrrolidone (NCP) is a preferable ligand for metal-oxo ions such as the uranyl ion.⁹⁻¹¹ Crystallographic studies of uranyl complexes have clarified that NCP coordinates through amide O atom to the uranyl ion. It was also found that donicity of NCP is comparable to N,Ndimethylformamide (DMF) and dimethyl sulfoxide.¹¹ It is often observed that Re(V) complexes prefer soft donor atoms. Therefore, it would be interesting to compare the reactivity of O-donor and S-donor ligands. We have selected tetramethylthiourea (TMTU) as a S-donor ligand representative. In this study, we have examined the substitution reactions of NCP or TMTU (Figure 1) for PPh₃ in the ReOCl₃(PPh₃)₂ complex.

Figure 1. Chemical formulas of NCP and TMTU.

2. Experimental

Materials and Instruments: All chemicals used in this study were of reagent grade and used without further purification. The ReOCl₃(PPh₃)₂ complex was synthesized by using the literature method.¹² The equilibrium reaction and kinetic studies were performed in dehydrated CH₂Cl₂ by using an UV-vis spectrophotometer (Shimadzu UV-3150). NMR spectra were measured by a Jeol GXR 270 NMR spectrometer.

Synthesis and X-ray diffraction of ReOCl₃(PPh₃)(NCP): A green crystalline complex of ReOCl₃(PPh₃)(NCP) was synthesized by mixing ReOCl₃(PPh₃)₂ with NCP and grown in the mixture with diethyl ether. The molecular structure was determined by an X-ray diffraction method. Intensity measurements were carried out on a Rigaku RAXIS RAPID diffractometer with Mo-K α radiation ($\lambda = 0.71075$ Å). Crystal data collection and final refinement parameters are summarized in Table 1. The structures were solved by a heavy-atom Patterson method, and expanded using Fourier techniques. The non-hydrogen atoms were refined using anisotropic temperature factors. Hydrogen atoms were introduced at calculated positions using

 TABLE 1: Crystallographic Data of ReOCl₃(PPh₃)(NCP)

 Complex

Empirical formula	$C_{28}H_{32}NO_2PCl_3Re$
Formula weight	738.11
Crystal system	monoclinic
Space group	$P2_1/c$
a (Å)	13.2336(8)
b (Å)	10.228(1)
c (Å)	20.752(2)
β (°)	95.487(4)
$V(Å^3)$	2796.0(4)
Ζ	4
Temperature (K)	113 ± 1
Residuals: R_1^a , wR_2^b	0.020, 0.051
Goodness of fit	1.04

 ${}^{a}R_{1} = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$

^b $wR_2 = \{\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma w(Fo^2)^2\}^{1/2}.$

^{*}Corresponding author. E-mail: yikeda@nr.titech.ac.jp. FAX: +81-3-5734-3061.

[†]Seikei University, Japan. ‡Szent Istvan University, Hungary. §University of Debrecen, Hungary.

Figure 2. Molecular structure of ReOCl₃(PPh₃)(NCP) complex.

the riding model. All calculations were performed using the Crystal Structure crystallographic software package.¹³

3. Results and Discussion

Molecular structure of ReOCl₃(PPh₃)(NCP): The obtained molecular structure of ReOCl₃(PPh₃)(NCP) is shown in Figure 2 and selected bond lengths and angles are listed in Table 2. It was found that NCP coordinates to Re(V) center on the *trans*-position of Re1-O1 bond, and Re(V) center is in a distorted octahedral geometry.¹⁴ The geometry around Re(V) center is almost identical to those of ReOCl₃(PPh₃)(DMF) and ReOCl₃(PPh₃)(OPPh₃) (OPPh₃ = triphenylphosphine oxide).^{15, 16} This is consistent with "the self-consistency rule", where *trans* position to oxo group tends to be occupied by a σ -donor ligand.¹⁷ It is also worthy of note that the bond length of Re1-Cl2, where the Cl atom coordinates to the Re(V) center in the *trans* site to PPh₃, is the shortest of the Re-Cl bonds in three complexes.

TABLE 2: Selected Bond Lengths and Bond Angles of ReOCl₃(PPh₃)L Complexes

L	NCP	\mathbf{DMF}^{a}	OPPh ₃ ^b
Bond length / Å			
Re1–O1	1.671(2)	1.664(4)	1.669(4)
Re1–O2	2.100(2)	2.133(4)	2.082(4)
Re1-Cl1	2.383(1)	2.372(2)	2.373(2)
Re1-Cl2	2.362(1)	2.368(2)	2.361(2)
Re1-Cl3	2.392(1)	2.373(2)	2.384(2)
Re1–P1	2.487(1)	2.500(1)	2.506(2)
Bond angle / $^\circ$			
O1-Re1-O2	168.34(9)	170.8(2)	171.35(18)
Cl1-Re1-Cl3	168.21(3)	167.40(6)	169.74 (6)
Cl2-Re1-P1	165.32(3)	166.02(5)	171.52 (6)

^aRef. 15, ^bRef. 16.

Equilibrium constant for the reaction between ReOCl₃(PPh₃)₂ and NCP: As mentioned above, ReOCl₃(PPh₃)(NCP) is formed by mixing ReOCl₃- (PPh₃)₂ with NCP in CH₂Cl₂. We noticed that this reaction is reversible as follows.

$$\operatorname{ReOCl}_{3}(\operatorname{PPh}_{3})_{2} + \operatorname{NCP} \underbrace{\stackrel{forward}{\longleftarrow}}_{backward} \operatorname{ReOCl}_{3}(\operatorname{PPh}_{3})(\operatorname{NCP})$$
(1)

The equilibrium (1) was examined in CH_2Cl_2 at 25 °C. Figure 3 shows each spectrum measured by adding NCP to a solution of $ReOCl_3(PPh_3)_2$. From the absorbance changes, the equilib-

Figure 3. Spectral changes in the reaction of $\text{ReOCl}_3(\text{PPh}_3)_2$ with NCP in CH₂Cl₂ at 25 °C. [ReOCl₃(PPh₃)₂]₀ = 0.94 mmol dm⁻³ and [PPh₃]_T = 10.2 mmol dm⁻³.

rium constant of (1) was determined to be 0.33 ± 0.1 in CH₂Cl₂ at 25 °C. This indicates that donicity of NCP to the ReO²⁺ moiety is comparable to that of PPh₃. The relatively high donicity of NCP is also observed in our previous work on the complex formation of UO₂²⁺ ion with NCP.¹¹

We also used TMTU as an unidentate ligand, and found that the reaction is not reversible in this case. This finding indicates that TMTU strongly coordinates to the Re(V) center. Some Re(V) complexes with TMTU have been reported.^{18, 19} We measured ³¹P NMR spectrum of a mixture of ReOCl₃(PPh₃)₂ with TMTU in CD₂Cl₂, and observed two peaks at -23.7 and -2.3ppm relative to the peak of 85% H₃PO₄. Those peaks should be assigned to the coordinated and free PPh₃, respectively. We have not obtained the crystal structure of the product yet. However, it is likely that the product with a formula of ReOCl₃(PPh₃)(TMTU) is formed by the reaction (2). The ³¹P chemical shifts of several compounds are listed in Table 3.

 $\text{ReOCl}_3(\text{PPh}_3)_2 + \text{TMTU} \longrightarrow \text{ReOCl}_3(\text{PPh}_3)(\text{TMTU}) + \text{PPh}_3$ (2)

TABLE 3: ³¹P chemical Shifts of Phosphorus Compounds

Compound	δ / ppm a
PPh ₃	-2.3
ReOCl ₃ (PPh ₃) ₂	-15.8^{b}
ReOCl ₃ (PPh ₃)(NCP)	-16.6
ReOCl ₃ (PPh ₃)(TMTU) ^c	-23.7
$P_{2}(OPDh)$	$-30.8 (\text{PPh}_3)^b$
	52.5 (OPPh ₃) ^b
OPPh ₃	30.5 ^{<i>b</i>}

^{*a*}In CD₂Cl₂ vs. external 85% H₃PO₄; ^{*b*}Ref. 7; ^{*c*}Plausible formula.

Kinetics of the reaction of ReOCl₃(PPh₃)₂ with L (L = NCP and TMTU): The kinetic studies of the reactions of ReOCl₃(PPh₃)₂ with L were carried out spectrophotometrically in CH₂Cl₂ at various temperatures. The pseudo first-order rate constants (k_{obs}) were measured by following the absorbance changes at 416 nm after mixing a solution of ReOCl₃(PPh₃)₂ with excess L ([Re] << [L]). Each kinetic trace was nicely fitted by the first-order equation.²⁰ It was found that the k_{obs} values are independent of the concentrations of L. The plots of k_{obs} values against [NCP] is shown in Figure 4. This result indicates that the rate-determining step (rds) of the *forward* reaction is ligand dissociation from the Re(V) center, and the dissociation group would be one of PPh₃ ligands in ReOCl₃(PPh₃)₂.

$$\operatorname{ReOCl}_{3}(\operatorname{PPh}_{3})_{2} \xrightarrow{\operatorname{rds}} \operatorname{ReOCl}_{3}(\operatorname{PPh}_{3}) + \operatorname{PPh}_{3}$$
(3)

We assume that the PPh₃ dissociation reaction (3) involves

Figure 4. Plots of k_{obs} against [NCP] for the *forward* reaction of (1). [ReOCl₃(PPh₃)₂] = 0.1 mmol dm⁻³ in CH₂Cl₂.

mer-trans and *mer-cis* isomerization of ReOCl₃(PPh₃)₂. From recent ³¹P NMR study, we have tentatively obtained evidence showing that such isomerization would exist in CD₂Cl₂.²¹ Furthermore, it is also reported that *mer-trans* and *mer-cis* ReOCl₃(PPh₃)₂ complexes have been isolated.²²

Scheme 1

When reaction (3) proceeds in Scheme 1, the rate constant is expressed by eq 4,

$$k_{\rm obs} = \frac{K_{\rm iso} \, k_{\rm d}}{1 + K_{\rm iso}} \tag{4}$$

and if K_{iso} is fairly smaller than 1, eq 4 can give eq 5.²¹

$$k_{\rm obs} = K_{\rm iso} k_{\rm d} \tag{5}$$

From the Eyring plot, the activation parameters were obtained as $\Delta H^{\ddagger} = 86.4 \pm 0.1 \text{ kJ mol}^{-1}$ and $\Delta S^{\ddagger} = 21 \pm 1 \text{ J K}^{-1} \text{ mol}^{-1}$. We also investigated the forward reaction (1) by using TMTU as an entering ligand at various temperatures, and confirmed that the k_{obs} values at each temperature are independent of [TMTU] and are almost the same as those in the reaction with NCP (We obtained ΔH^{\ddagger} and ΔS^{\ddagger} as $81 \pm 1 \text{ kJ mol}^{-1}$ and $2 \pm 3 \text{ J K}^{-1} \text{ mol}^{-1}$ for TMTU reaction).

Kinetics of the reaction of ReOCl₃(PPh₃)(NCP) with PPh₃: The *backward* reaction of (1) was also examined by the absorbance changes at 416 nm after mixing a solution of ReOCl₃(PPh₃)(NCP) with PPh₃ under the condition of [Re] << [PPh₃]. Figure 5 shows that the rate constants (k_{obs}) are not affected by [PPh₃]. Therefore, it is also proposed that ligand dissociation should be the rate-determining step in the backward reaction. From the Eyring plot, the values of ΔH^{\ddagger} and ΔS^{\ddagger} were obtained as 90 ± 2 kJ mol⁻¹ and 48 ± 5 J K⁻¹ mol⁻¹, respectively.

Reaction mechanism of reaction (1): From the kinetic data, it is presumed that the rate-determining steps of both directions of reaction (1) are dissociation of the leaving ligand (PPh₃ from ReOCl₃(PPh₃)₂ in the *forward* reaction, and NCP from ReOCl₃(PPh₃)(NCP) in the *backward* reaction).

Considering this finding and geometrical aspect of Re complexes, we propose a mechanism of the ligand substitution reaction of $\text{ReOCl}_3(\text{PPh}_3)_2$ with NCP as shown in Scheme 2.

Figure 5. Plots of k_{obs} against [PPh₃] for the *backward* reaction of (1). [ReOCl₃(PPh₃)(NCP)] = 0.1 mmol dm⁻³ in CH₂Cl₂.

4. Summary

The results of present study are summarized as follows. The ReOCl₃(PPh₃)₂ complex reacts with NCP in CH₂Cl₂ to form ReOCl₃(PPh₃)(NCP). The resulting ReOCl₃(PPh₃)(NCP) complex has a distorted octahedral geometry and NCP coordinates to the *trans* position of Re = O group. The equilibrium constant of ReOCl₃(PPh₃)₂ + NCP \leftrightarrow ReOCl₃(PPh₃)(NCP) + PPh₃ was determined as 0.33 ± 0.1 in CH₂Cl₂ at 25 °C. The rate-determining steps of forward and back-ward reactions in the above equilibrium are proposed to be the dissociation of PPh₃ and NCP coordinated to the *trans* position of the oxo group in Re = O moiety.

Acknowledgement. This research was partly supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. S. C. is thankful for Invitation fellowship programs for research in Japan (JSPS).

Reference

- (1) A. E. Martell and R. D. Hancock, *Metal complexes in Aqueous Solutions* (Plenum press, New York, 1996).
- (2) K. Schwochau, Technetium Chemistry and Radiopharmaceutical Applications, (Wiley-VCH, 2000).
- (3) W. A. Volkert and T. J. Hoffman, Chem. Rev. **99**, 2269 (1999).
- (4) J. C. Vites and M. M. Lynam, Coord. Chem. Rev. 172, 357 (1998).
- (5) A. Rey, I. Pirmettis, M. Pelecanou, and et al., Inorg. Chem. **39**, 4211 (2000).
- (6) L. Otero, P. Noblia, D. Gambino, H. Cerecetto, M. González, R. Sánchez-Delgado, E. E. Castellano, and O. E. Piro, Z. Anorg. Allg. Chem. 629, 1033 (2003).

- (7) A.-M. Lebuis and A. L. Beauchamp, Can. J. Chem. 71, 441 (1993).
- (8) K. J. Smith, A. L. Ondracek, N. E. Gruhn, D. L. Lichtenberger, P. E. Fanwick, and R. A. Walton, Inorg. Chim. Acta 300, 23 (2000).
- (9) T. R. Varga, A. C. Bényei, Zs. Fazekas, H. Tomiyasu, and Y. Ikeda, Inorg. Chim. Acta 342, 291 (2003).
- (10) Y. Ikeda, E. Wada, M. Harada, T. Chikazawa, T. Kikuchi, H. Mineo, Y. Morita, M. Nogami, and K. Suzuki, J. Alloy. Comp. **374**, 420 (2004).
- (11) N. Koshino, M. Harada, M. Nogami, Y. Morita, T. Kikuchi, and Y. Ikeda, Inorg. Chim. Acta **358**, 1857 (2005).
- (12) G. W. Parshall, L. W. Shive, and F. A. Cotton, Inorg. Synth. **17**, 110 (1977).
- (13) CrystalStructure 3.10: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2002).
- (14) The CIF file has been deposited to Cambridge Crystallo-

graphic Data Centre (CCDC). The reference number is 277872.

- (15) V. S. Sergienko, Rus. J. Inorg. Chem. 39, 1900 (1994).
- (16) J. C. Bryan, M. C. Perry, and J. B. Arterburn, Acta Cryst. C54, 1607 (1998).
- (17) M. A. Porai-Koshits, L. O. Atovmyan, Soviet J. Coord. Chem. 1, 1065 (1975).
- (18) X. Shan, A. Ellern, I. A. Guzei, and J. H. Espenson, Inorg. Chem. 43, 3854, (2004).
- (19) D. Gambino, B. S. Parajón-Costa, H. Cerecetto, M. González, E. Kremer, and E. J. Baran, J. Coord. Chem. 55, 1441 (2002).
- (20) J. H. Espenson, *Chemical Kinetics and Reaction Mechanisms*, 2nd ed. (McGraw-Hill, New York, 1995).
- (21) We tentatively obtained $K_{iso} \approx 0.14$ in CD₂Cl₂ at 25 °C.
- (22) N. K. Kobilov and K. V. Kotegov, Leningr. Tekhnol. Inst. Leningrad, USSR. (1977).