Multidentate Dipyridyl Derivatives as Chelates for Rhenium(V)

Thomas I. A. Gerber,*,a Abuhak’r Abrahams,* and P. Mayerb

aDepartment of Chemistry, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa
bDepartment of Chemistry, Ludwig-Maximilians University, D-81377 München, Germany

Received: July 31, 2005; In Final Form: September 30, 2005

Rhenium(V) complexes with the following multidentate dipyridyl ligands were prepared: 2,2’-dipyridylamine (DPA), 1,2-bis(2-pyridyl)ethylene (DPE) and di-(2-picolyl)amine (HDIPA). Reactions of a twofold molar excess of the potentially NN donor ligand DPA with trans-[ReOCl(OE)(PPh3)] in ethanol led to isolation of a monomer [ReOCl2(OE)(DPA)] (1). Treatments of trans-[ReOCl(PhP)], with a tenfold molar excess of DPA in ethanol at reflux yielded [ReOCl(DPA)]Cl (2), but with a twofold molar excess a dimer (µ-O)[(ReOCl2(dpa))]2 (3a) was isolated. The latter reaction with (n-Bu3N)[ReOCI] as starting material in ethanol at room temperature led to a dark green product, also with the formulation (µ-O)[(ReOCl(dpa))]2 (3b). Reacting equimolar quantities of (n-Bu3N)[ReOCI] and HDIPA in acetone led to [ReOCI(OH)(DIPA)]Cl (4) in which HDIPA acted as a monoanionic terdentate chelate. The reaction of trans-[ReOCl(PhP3)] with DPE, in which DPE undergoes a metal-promoted nucleophilic attack by a water molecule, produces a complex with a general formula [ReO(DPE.OH)Cl]2 (5).

1. Introduction

Oxorhenium(V) complexes with terdentate diionic ONX (X = O, S) donor Schiff base ligands have been well studied.1,2,3 It was found that the three donor atoms are bonded to the metal on the cis equatorial plane with respect to the Re = O linkage in complexes of the type [ReOCl2(ONX)(MeOH)]. A study of oxorhenium(V) complexes with terdentate Schiff base ligands having the ONN donor-atom set has shown that it is the imino nitrogen that is bonded trans to the oxo oxygen in complexes of the type [ReOCl2(ONN)].4 We have previously reported the products [ReOCl2(ONN)] obtained from the reaction of trans-[ReOCl2(PhP3)] with terdentate ONN-donor ligands of the pyridylaminophenol type, which are similar to the terdentate Schiff base ligands, except that they contain an amino nitrogen in place of the imino nitrogen.5

We report here the synthesis of rhenium(V) complexes with the following multidentate dipyridyl ligands: 2,2’-dipyridylamine (DPA), di-(2-picolyl)amine (HDIPA) and 1,2-bis(2-pyridyl)ethylene (DPE).

2. Experimental

Materials. Trans-[ReOCl2(PhP3)]3, (n-Bu3N)[ReOCI]4 and trans-[ReOCl(OE)(PPh3)]1 were synthesized by literature methods. 2,2’-Dipyridylamine (DPA), 1,2-bis(2-pyridyl)ethylene (DPE) and di-(2-picolyl)amine (HDIPA) were obtained commercially (Aldrich). Solvents were refluxed over appropriate drying agents, and distilled and degassed before use. Infrared spectra were obtained using KBr disks. The instrumentation used is the same as reported earlier.6

Synthesis of [ReOCl2(OE)(DPA)] (1). DPA (137 mg, 800 µmol) was added to a stirred suspension of trans-[ReOCl2(PhP3)]3 (300 mg, 360 µmol) in 10 cm3 ethanol, and the mixture was heated under reflux for 30 min. After about 10 min of heating the lime-green colour of the starting material turned to purple, and after heating was stopped and the solution cooled to room temperature, a purple solid was filtered off. Recrystallization from dichloromethane/ethanol afforded dark blue crystals. Yield = 58%, mp 299–301 °C. IR (cm−1): ν(Re = O) 954 s, ν(C = C) 1587 s, ν(C = N) 3216 w, δ(OCH2) 916 vs, ν(Re-N) 524 m, ν(Re-Cl) 318 m.

Synthesis of trans-[ReOCl2(DPE)]Cl (2). DPA (626 mg, 3.65 mmol) in ethanol (5 cm3) was added to a stirred suspension of trans-[ReOCl2(PhP3)]3 (331 mg, 400 µmol) in the same solvent (10 cm3), and the resulting solution was heated under reflux for 30 min. During this time the solution changed colour from yellow-green to brown, and after 20 min a bright orange precipitate was formed. After cooling the mixture to room temperature the solid was filtered off, washed with ethanol (2 x 2 cm3) and dried under vacuum. Crystals of the 3H2O solvate, suitable for X-ray diffraction, were obtained by slow evaporation of the mother liquor from the synthetic solution. Yield = 72%, mp 229 °C. IR (cm−1): ν(O = Re = O) 814 vs, ν(Re-N) 534 m, ν(Re-Cl) 319 m.

Synthesis of [µ-O][(ReOCl2(DPA))]2 (3a). To an ethanol (10 cm3) suspension of trans-[ReOCl2(PhP3)]3 (300 mg, 400 µmol) was added DPA (137 mg, 800 µmol). The mixture was heated under reflux for 30 min, generating a brown solution from which a green solid precipitated. The mixture was cooled to room temperature and the green product was filtered off after standing overnight. It was then washed with cold ethanol and diethyl ether, and vacuum dried. Recrystallization was from acetonitrile. Yield = 76%, mp 274 °C. IR (cm−1): ν(Re = O) 913 m, ν(Re-O-Re) 697 vs, ν(Re = C) 1585 s, ν(C = N) 1632 s, ν(N-H) 3297 v, ν(Re-N) 524 m, ν(Re-Cl) 317 m, 322 m.

Synthesis of [µ-O][(ReOCl2(DPA))]2 (3b). A solution of DPA (190 mg, 1.11 µmol) in ethanol (10 cm3) was added dropwise to a stirred suspension of 324 mg (552 µmol) of (n-Bu3N)[ReOCI]3 in 10 cm3 of ethanol. An intense purple solution was obtained in a few minutes, and after stirring for 30 min a dark green crystalline precipitate was filtered off, washed rapidly with water, acetone and diethyl ether, and dried under vacuum. Recrystallization was from DMSO/n-hexane. Yield = 74%, mp 246 °C. IR (cm−1): ν(Re = O) 923 m, ν(Re-O-Re) 697 vs, ν(Re = C) 1585 s, ν(C = N) 1628 s, ν(N-H) 3301 v, ν(Re-N) 534 m, ν(Re-Cl) 319 m.

Synthesis of [ReOCI(OH)(DIPA)]Cl (4). HDIPA (0.0244 g, 123 µmol) dissolved in 6 cm3 acetonitrile was added to a light

*Corresponding author. E-mail: thomas.gerber@nmmu.ac.za. FAX: +27(41)5044236.

© 2005 The Japan Society of Nuclear and Radiochemical Sciences
Published on Web 12/28/2005
green, stirred solution of \((n\text{-Bu}_2\text{N})[\text{ReOCl}_3]\) (0.07191 g, 123 \(\mu\)mol) in the same solvent (6 cm\(^3\)). A dark green solid immediately formed, and the suspension was stirred for further 4 h at room temperature. The solid was removed by filtration, washed with acetone (2 \(\times\) 3 cm\(^3\)), and dried under vacuum. Recrystallization from acetonitrile produced avocado-green crystals, suitable for X-ray diffraction studies. Yield = 65%, mp > 300 °C. IR (cm\(^{-1}\)): \(\nu(\text{Re} = \text{O})\) 957 vs, \(\nu(\text{C} = \text{N})\) 1613 s, \(\nu(\text{C} = \text{C})\) 1562 w, \(\nu(\text{Re}-\text{N})\) 590 m, \(\nu(\text{Re}-\text{N})\) 664 w, \(\nu(\text{Re}-\text{Cl})\) 309 m.

Synthesis of \([\text{ReOCl}_3(\text{DPE}OH)]\) (5). A solution of 43 mg (235 \(\mu\)mol) of DPE in 10 cm\(^3\) ethanol was added to a suspension of trans-\([\text{ReOCl}_3(\text{PPh}_3)]\) (in 5 cm\(^3\)) ethanol. The mixture was heated under reflux for 24 h. The colour of the solution gradually turned from green to blue, with the continuous precipitation of a blue compound. After cooling to room temperature, the blue precipitate was collected by filtration, washed with ethanol (2 \(\times\) 2 cm\(^3\)) and dried under vacuum. Yield = 90% (51 mg); mp 223 °C. IR (cm\(^{-1}\))\(\nu(\text{Re} = \text{O})\) 940; \(\nu(\text{Re}-\text{N})\) 523, 511; \(\nu(\text{Re}-\text{O})\) 441; \(\nu(\text{Re}-\text{Cl})\) 322.

X-ray Structure Determination. Data collection was performed at 200 K on a Nonius Kappa CCD using Mo K\(\alpha\) radiation. Nonhydron atoms were refined with anisotropic displacement parameters; hydrogen atoms bound to carbon were idealized and fixed. After twinning crystals in 4 only the Re, Cl(1), Cl(2), O(1) and O(2) were refined anisotropically. Structural refinements were carried out by the full-matrix least-squares method on \(F^2\) using the program SHELXL-97.\(^9\) The crystal data and details of the structure determinations are given in Table 1.

3. Results and Discussion

Structure of \([\text{ReOCl}_3(\text{OE})_2(\text{DPA})]\). The rhenium atom (Figure 1) is at the centre of a distorted octahedral environment. The basal plane is defined by a N\(_2\)Cl\(_2\) donor set. The ethoxide ion and the oxo group are in trans positions. Distortion form an ideal rhenium centred octahedron mainly result in a nonlinear O(1)–Re–O(2) axis of 169.6(2)°, accomplished by N(1)–Re–Cl(2) and N(3)–Re–Cl(1) angles of 175.6(2)° and 179.0(2)° respectively. The rhenium atom is lifted out of the mean equatorial plane by 0.0488(1) Å towards O(1), which is the result of the nonorthogonal angles O(1)–Re–N(1) = 87.9(3)°, O(1)–Re–N(3) = 85.7(2)°, O(1)–Re–Cl(1) = 95.1(2)° and O(1)–Re–Cl(2) = 96.0(2)°. The pyridine rings of DPA are “flapped” around N(2) away from O(1) towards O(2). The two rings make dihedral angles of 32.24° and 31.79° with the mean equatorial plane, and 30.25° with each other.

Structure of trans-\([\text{ReO}_2(\text{DPA})_2]\)Cl\(_3\)H\(_2\)O. The rhenium atom is at the centre of an octahedron with the equatorial plane formed by a N\(_2\)pyridinic donor set (Figure 2). The two oxo donor groups (it is 0.0086 Å out of the mean equatorial N\(_2\) plane towards O(1)), with the result that the four O(1)–Re–N angles are all orthogonal (from 90.08(13)° to 90.45(13)°). The average bite angle of the two DPA ligands equals 83.80(15)° [N(1)–Re–N(3) = 83.95(15)°; N(4)–Re–N(6) = 83.64(15)°], which is larger than that of 2,2'-bipyridine (BIPY) in rhenium(V) complexes (~75°).\(^{12}\)

Structures of \((\mu\text{-O})[[\text{ReOCl}_3(\text{DPA})]]\) (3a) and \((\mu\text{-O})[[\text{ReOCl}_3(\text{DPA})]]\)·2DMSO (3b·2DMSO). Complexes 3a

TABLE 1: Crystal Data and Structure Refinement Details for 1, 2, 3a, 3b, 4 and 5

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2·3H(_2)O</th>
<th>3a</th>
<th>3b·2DMSO</th>
<th>4·Cl</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C({30})H({30})N({10})O({12})Re</td>
<td>C({30})H({30})Cl({10})N({10})O(_{12})Re</td>
<td>C({30})H({30})Cl({10})N({10})O(_{12})Re</td>
<td>C({30})H({30})Cl({10})N({10})O(_{12})Re</td>
<td>C({30})H({30})Cl({10})N({10})O(_{12})Re</td>
<td>C({30})H({30})Cl({10})N({10})O(_{12})Re</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>849.37</td>
<td>806.91</td>
<td>849.37</td>
<td>472.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal System</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
<td>Trigonal</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Orhtorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pnma, 2(\bar{c})</td>
<td>P</td>
<td>P(\sqrt{3})</td>
<td>P</td>
<td>P(\sqrt{3})</td>
<td></td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.8212(4)</td>
<td>7.3414(3)</td>
<td>13.8640(6)</td>
<td>9.0089(11)</td>
<td>8.2765(4)</td>
<td>11.3582(9)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.6306(2)</td>
<td>11.2706(4)</td>
<td>13.8640(6)</td>
<td>9.2570(11)</td>
<td>12.1139(9)</td>
<td>14.9724(12)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.1638(4)</td>
<td>13.8906(6)</td>
<td>25.5319(17)</td>
<td>10.9635(14)</td>
<td>14.6718(8)</td>
<td>16.1135(13)</td>
</tr>
<tr>
<td>Volume (Å(^3))</td>
<td>1483.5(1)</td>
<td>1112.7(1)</td>
<td>4907.5(4)</td>
<td>800.6(2)</td>
<td>1467.90(15)</td>
<td>2732.0(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Density (calcld., Mg/m(^3))</td>
<td>2.191</td>
<td>2.449</td>
<td>2.449</td>
<td>2.214</td>
<td>2.297</td>
<td></td>
</tr>
<tr>
<td>Absorption coefficient (mm(^{-1}))</td>
<td>8.555</td>
<td>10.330</td>
<td>8.063</td>
<td>8.645</td>
<td>9.284</td>
<td></td>
</tr>
<tr>
<td>F(000)</td>
<td>928</td>
<td>636</td>
<td>3376</td>
<td>506</td>
<td>928</td>
<td>1776</td>
</tr>
<tr>
<td>Crystal Size (mm)</td>
<td>0.18 (\times) 0.03 (\times) 0.02</td>
<td>0.07 (\times) 0.10 (\times) 0.12</td>
<td>0.07 (\times) 0.13 (\times) 0.20</td>
<td>0.05 (\times) 0.10 (\times) 0.14</td>
<td>0.03 (\times) 0.05 (\times) 0.12</td>
<td>0.03 (\times) 0.18 (\times) 0.26</td>
</tr>
<tr>
<td>Theta min-max</td>
<td>3.15–25.01</td>
<td>3.2–27.4</td>
<td>2.6–28.0</td>
<td>2.0–28.1</td>
<td>2.2–24.0</td>
<td>2.5–24.0</td>
</tr>
<tr>
<td>R, wR</td>
<td>0.0251, 0.0509</td>
<td>0.0367, 0.0756</td>
<td>0.0181, 0.0403</td>
<td>0.0272, 0.0591</td>
<td>0.0475, 0.1107</td>
<td>0.0285,0.05</td>
</tr>
</tbody>
</table>
The structure of [ReOCl(OH)2(DIPA)](4). The rhenium atom is at the centre of a distorted octahedron (Figure 5). The basal plane is defined by the two pyridyl nitrogen atoms N(1) and N(3), the deprotonated secondary amine nitrogen N(2) and the chloride Cl(1). The oxo group O(2) and the O(1) of the coordinated water molecule are in trans axial positions. Distortion from an ideal rhenium-centred octahedron mainly results in a nonlinear O(1)-Re-O(2) axis of 167.2(4)°, accomplished by N(1)-Re-N(3) and Cl(1)-Re-N(2) angles of 153.9(4)° and 162.9(4)° respectively. The rhenium atom is lifted out of the mean equatorial N3Cl plane by 0.34 Å towards O(2), which is the result of the nonorthogonal angles O(2)-Re-N(1) = 99.0(5)°, O(2)-Re-N(2) = 106.4(5)°, O(2)-Re-N(3) = 102.5(5)° and O(2)-Re-Cl(1) = 90.6(4)°. The Re-O(1) distance of 2.21(1) Å is within of the average Re-NH lengths of 2.23(2) Å found for water molecules bound trans to the oxo atom in [ReOCl(tu)(H2O)Cl] and [ReOCl(tu)(H2O)]13,14. The short Re-N(2) bond length of 1.89(1) Å is considerably shorter than the average Re-NH lengths of 2.21(2) Å found in complexes containing ligands of the pyridylaminophenol type, and illustrates a significant multiple bond character.

Structure of [ReOCl(DPE.OH)Cl2](5). The structure contains discrete, monomeric, neutral monooxorhenium(V) com-
plex units, and the crystal packing is governed by van der Waals contacts. No intermolecular hydrogen bonds exist, and weak intramolecular hydrogen bonds are observed between C(1)H(1)···O(2) (2.947(9)Å) and C(12)H(12)···O(2) (2.85(1)Å).

The DPE.OH moiety acts as a uninegative, terdentate NON donor ligand. Severe distortions from the ideal Re-centered octahedral configuration are as follows; (i) the Re atom lies out of the equatorial mean plane by 0.15 Å toward the oxo ligand; (ii) the nonlinear O(1)-Re-O(2) axis of 160.1(2)˚ is accomplished by Cl(1)-Re-N(2) and Cl(2)-Re-N(1) angles of 174.4(2)˚ and 170.0(2)˚, respectively; (iii) the edge distances are observed in a rather narrow range (from 3.01 Å for N(1)···N(2) to 3.33 Å for Cl(1)···Cl(2), and the interligand angles in the equatorial plane depart from the ideal 90˚ (from 86.5 to 93.4˚); (iv) in the X$_2$N$_2$O$_2$ coordination polyhedron the Re atom is +1.02 Å away from the Cl(1)Cl(2)O(2) plane, and −1.35 Å from the N(1)N(2)O(1) one, the angle between the two triangles being 12.1˚.

Bond lengths and angles in the complex show no unusual features, being within the range expected from the comparison of other six-coordinate monoxo complexes of Re(V).2, 3, 8–12

Acknowledgements. The authors are grateful to the National Research Foundation (Grant #TTK2004081100014) and NMMU for financial assistance.

Supplementary Material. Full lists of crystallographic data are available from the authors upon request.

Reference