研究発表要旨:9月29日(木)

2A01~2A08: 口頭発表 A会場

2B01~2B08: 口頭発表 B会場

長鎖を有するスピンクロスオーバー鉄(Ⅱ)錯体

(九大院理¹、広大院理²) 〇速水真也¹、日岐憲司¹、井上克也²、前田 米藏¹

<序> 近年、多機能を有する分子が非常に注目を集めており、金属錯体液晶もその中の一 つである。液晶は機能材料として非常に有用なものであり、盛んに研究が行われている。ま た液晶材料としては有機液晶が用いられており、それらは電場に応答しディスプレイなどに 用いられている。これらは磁場にも応答することが可能であるが、有機液晶の場合は反磁性 であり、強磁場下での応答性を示す。金属イオンを取り込んだ液晶は、金属錯体液晶 (metallomesogen)と呼ばれているが、不対電子すなわちスピンを有する液晶は弱磁場でも容易 に応答することができる。このような観点から金属錯体液晶の研究が、最近盛んにされ始め ている。この金属錯体液晶の金属錯体部分にスピン転移錯体を組み込むと、スピン転移ある

いは光誘起スピン転移に伴う液晶相転移の発現が可能と なる。さらに長鎖アルキル基を有しているため、アルキ ル鎖の長さに依存した液晶特性および磁気特性などを詳 細に検討することを目的に実験を行った。さらに金属錯 体液晶は、有機液晶と異なり金属特有の電子スピンや電 荷をもつため、それらを活用することで新しい機能を生 み出す可能性がある。また長鎖アルキル鎖を有する金属 錯体はLB膜を作製することができ、単分子膜での磁気的 性質や分光学的性質についても興味深い。そこで今回、 長鎖アルキル鎖を有する金属錯体を種々合成し、それら の磁気的性質や分光学的性質について研究を行った。

<実験> 鉄(II)スピンクロスオーバー錯体 [Fe(C15-abpt)₂](BF₄)₂ (1), [Fe(1C16-bzimpy)₂](BF₄)₂ (2), [Fe(2C16-bzimpy)₂](BF₄)₂ (3), [Fe(3C16-bzimpy)₂](BF₄)₂ (4) を合成した。これら得られた錯体の磁化率やメスバウア ースペクトルの測定を行った。

<結果と考察> 長鎖アルキル鎖を有する鉄(II)錯体 [Fe(C15-abpt)₂](BF₄)₂ (1)の磁化率を測定したところ T_c = 185K でスピンクロスオーバー挙動を示した。5Kで光照 射を行ったところLIESST 挙動も観測することができた。 長鎖アルキル鎖を有するスピンクロスオーバー錯体にお いて LB 膜を作製し、メスバウアースペクトルの測定な どを行っていく予定である。

Spin-Crossover Iron(II) Compounds with Long Alkyl Chains HAYAMI, S., HIKI, K., INOUE K., MAEDA, Y.

Fig. $\chi_m T$ versus T plots for complex 1. (∇) cooling mode, (Δ) warming mode and (\blacktriangle) warming mode after illumination.

Fig. The ⁵⁷Fe Mössbauer spectra of complex 1. (a) Spectrum at 40 K. (b) Spectrum at 40 K under illumination. (c) Spectrum at 40 K after illimination.

メスバウアー分光法による集積型錯体の
スピンクロスオーバー現象の研究
(広島大N-BARD¹、広島大院理²)
○中島 覚¹、森田高樹²、山田康治²、井上克也²

【はじめに】1,2-ビス(4-ピリジル)エタンはanti-gauche異性を有するが、異性を反映し た一次元構造、二次元シート構造、相互貫入構造が得られる。本研究では、これらの集積型 錯体に有機物を導入し、上記三構造のそれぞれに有機物を導入できるかどうか、これにより スピン状態の制御ができないかを検討した。

【結果と考察】X線構造 解析より、有機物を包 接した構造を確認した。 ゲスト分子、アニオン の違いにより、集積構 造が変わり、一次元構 造、二次元シート構造、 相互貫入構造の三構造

表 構造のまとめ

有機分子(↓)アニオン(→)	NCS	NCSe	NCBH ₃
biphenyl	シート(a)	一次元(b)	一次元(c)
2-nitrobiphenyl	相互貫入(d)	相互貫入(e)	ジート(f)
1,4-dichlorobenzene	一次元(g)	一次元(h)	包接せず(i)
diphenylmethane	相互貫入(j)	相互貫入(k)	シート(I)

が得られた。その結果を表にまとめる。

代表的なメスバウアースペクトルを図 に示す。メスバウアーパラメータより、 室温で二価高スピンであったものが、液 体窒素温度では二価低スピンとなること が分かった。このようなスピンクロスオ ーバー現象は、a,b,i以外の全ての錯体 で観測された。その変化は集積構造を大 きく反映した。相互貫入構造では80K 付近でスピン状態の変化が見られたが、 さらに低温でも約半分の鉄は高スピンの ままであった。二次元シート構造では転 移温度が180K付近まで上昇した。一 次元構造では転移温度がアニオン、有機 分子に大きく依存した。中でも、cでは

図 cの⁵⁷Fe メスバウアースペクトル

5Kのヒステリシスが観測され、DSCより熱異常が観測された。

Mössbauer spectroscopic study on the spin-crossover phenomena of the assembled complexes NAKASHIMA, S., MORITA, T., YAMADA, K., INOUE, K.

2A02

フェリシアン化アルキルアンモニウムのメスバウアー分光学的研究

(都立大院理) 〇中島 由美子, 片田 元己

【はじめに】

フェリシアン化アルキルアンモニウムの[(n-C_nH_{2n+1})_mNH_{4-m}]₃[Fe(CN)₆]型化合物の研究はほ とんど行なわれておらず、特にジアルキルアンモニウム(m=2)については報告例もない。 [Fe(CN)₆]³⁻イオンはFeを中心にCN基が八面体に配位しているが、[(n-C_nH_{2n+1})_mNH_{4-m}]⁺イオンの アルキル基鎖が長くなると、[Fe(CN)₆]³⁻イオンの形状は影響を受けて歪むことが予測される。 そこで本研究では、そのゆがみの程度やアルキル基鎖の分子運動による格子力学的な知見を 得るために、メスバウアースペクトル温度変化測定や熱分析測定を行なった。

【実験】

試料は水または水−エタノール混合溶媒中で、塩化アルキルアンモニウムとK₃[Fe(CN)₆]とを 反応させて合成した。同定はC,H,N元素分析により行なった。粉末X線回折測定とDSC測定は 昇温と降温の両モードを繰り返し行なった。メスバウアースペクトル測定は⁵⁷Co(Rh)を線源と して常法により行なった。

【結果と考察】

粉末X線回折の結果より、[(n-C_nH_{2n+1})_mNH_{4-m}]₃[Fe(CN)₆]型化合物のm=1,2 のn≥10 ではアル キル基鎖が貫入した層状構造を有していることが分かった。そして、m=2 の方が1より層間 距離がやや長かった。このことはm=2 の方がm=1 に比べて、貫入の程度が十分でないことを 示唆している。また、n=12 のメスバウアースペクトル温度変化測定(Fig.1)においてm=2 は 室温付近で測定できなくなった。このことは、m=2 のアルキル基鎖の貫入が十分でないため アルキル鎖の運動により測定が困難になったと考えている。四極分裂の大きさもn=12 の場合、 液体窒素温度において約 1.8mm・s⁻¹ (m=1) と 0.9mm・s⁻¹ (m=2) でm=1 の方が大きな値を示し、 [Fe(CN)₆]³⁻イオンの歪みの程度が大きいことが示唆される。このことより、アルキル基の数の 違いによって影響を大きく受けることが分かった。

Mössbauer Spectroscopic Studies of Alkylammonium Ferricyanide NAKAJIMA, Y., KATADA, M.

〇土居内隆喜¹、藤井敏司¹、酒井 宏¹、森本正太郎²

【緒言】

π共役配位子であるジハイドロオキシベンゾキノン誘導体やシュウ酸は金属イオンと一次元鎖 高分子錯体を形成することが知られている。これらの高分子化を抑制する配位子として四座配位 であるtren [tris(2-aminoethyl)amine] や tpa [tris(2-pyridylmethyl)amine]などがあり、先に金属イオン と配位させることで二核金属錯体を形成することができる。我々は前回の討論会において、末端 配位子にtrenを用いた二核鉄(II)錯体の金属イオン間の相互作用、また架橋配位子がおよぼす磁気 的挙動の相違について報告した。今回、架橋配位子を前回同様、CA(chloranilic acid)、

DHBQ(2,5-dihydroxy-1,4-benzoquinone) および OX(oxalic acid)とし、tpaを末端配位子とするニ ッケル(II)、鉄(II)の新規二核金属錯体を合成し た。これら錯体の粉末XRD、FT-IR、元素分析、 Fe-57 メスバウアースペクトル、磁化率などを 測定し、構造と電子状態、末端配位子がおよぼ す磁気的挙動について検討した。

Fig. 1 H原子を省略した[Ni₂(tpa)₂OX]²⁺の構造

【実験】

tpa 配位子は2-クロロメチルピリジン塩酸塩および2-ピコリルアミンを用いて合成した。配位 子の同定はFT-IR、¹HNMRで行った。合成したtpaを末端配位子とする二核ニッケル(II)、鉄(II)錯 体はそれぞれ硫酸ニッケル(II)および硫酸鉄(II)水溶液にtpa、Na₂CA、Na₂DHBQ、Na₂OX、NaBPh₄ を化学量論比で加えることにより錯体を結晶として得た。得られたニッケル(II)錯体は MeCN-diethyl etherから、鉄(II)錯体はMeCN-EtOHから再結晶を行った。二核鉄(II)錯体の合成およ びろ過などすべての過程は嫌気性条件下で行った。

【結果と考察】

[Ni₂(tpa)₂L](BPh₄)₂[L=CA(1), DHBQ(2), OX(3)]のそれぞれ3つの錯体は、FT-IR、元素分析および磁化率の測定から、Fig.1 に示すようなニッケル(II)二核錯体を形成していることを確認した。 磁化率測定において、5Kから300Kにおいて相転移やヒステリシスは観測されず、交換パラメー

Mössbauer spectra and Magnetization of the dinuclear metal complexes with the bridging π conjugate ligands.

DOIUCHI, T., FUJII, S., SAKAI, H., MORIMOTO, S.

レーザー蒸着によって生成した鉄薄膜の基板との反応 (東理大理¹,東大院工²)〇並木健太朗¹,宮崎淳¹,野村貴美², 山田康洋¹

1. はじめに レーザー蒸着法はレーザーアブレーションによって原子を気化して基板上に 蒸着する手法であり、鉄などの蒸気圧の低い物質の薄膜を容易に生成することができる。通 常の抵抗加熱による気化では基底状態の鉄原子が生成するのに対し、レーザーアブレーショ ンでは高いエネルギー(並進エネルギーと電子励起)を持った鉄原子やクラスターが生成す るという特色があるため、得られる薄膜にも特異な物性が期待される。これまで、レーザー 蒸着によって Al 基板や Si 基板上に生成した鉄薄膜の磁気配向や内部磁場分布に着目して報 告してきたが、本研究ではレーザー蒸着時の基板との化学反応に着目し、様々な基板上に鉄 薄膜を生成させ、メスバウアー分光法により測定した。また、これまでは Al 基板や Si 基板 といった非磁性の基板を用いてきたが、基板が持つ磁性の、レーザー蒸着時の基板との化学 反応や磁気配向に対する影響を調べるために Co 基板を用いた薄膜生成を行った。

2.実験 YAG-laser (NewWave, TEMPEST 10, 532 nm, 85 mJ/pulse, 5 ns)からの光を凸レンズに より集光し、真空容器内 (10^{5} Pa) に保持した金属鉄片 (57 Fe 濃縮)を照射した。レーザー蒸 発した鉄原子を基板上に堆積させ薄膜試料を得た。基板温度は閉サイクル型へリウム冷凍機 (Iwatani CryoMini) と抵抗加熱型ヒータを用いて目的とする温度 ($10 \sim 573$ K) に保った。蒸 着量はレーザーパルス数で制御し、基板試料の質量変化から α -Fe 結晶に換算した膜厚を見積 もった。試料のメスバウアースペクトルは室温で、 57 Co/Rh 線源により透過法と散乱法で測定 した。また、薄膜の表面形状を走査型電子顕微鏡 (SEM) (HitachiS-5000) を用いて観察した。 **3. 結果と考察** 図1に Co 基板上に蒸着した鉄薄膜のメスバウアースペクトルを示す。蒸着 時の基板温度の違いを比較した結果、基板温度 573K で蒸着した試料(a)には α -Fe による磁気 分裂 (330 KO_e) と 2 組のセクステット ($\delta = 0.20$ mm/s, $\Delta E_q = 0.04$ mm/s, H = 199 KO_e)、($\delta = 0.20$ mm/s, $\Delta E_q = -0.07$ mm/s, H = 114 KO_e) の吸収が見られ、Co 固体中に占める Fe 原子のサイトが確定 していることがわかった。一方、蒸着時の基板温度が 297K (b) や 10K (c) の試料には、 α -Fe による磁気分裂と内部磁場分布をもつ成分が観測され、Co 固体中の様々なサイトに鉄原子が捕 らえられていることが明らかになった。このことから、Co 固体中で Fe の占めるサイトが確定す るには基板上での熱拡散が重要であることが示された。また、蒸着時の基板温度 297K (b) と 10K

(c)の試料の比較により、10Kの試料の方がα-Feによる磁気分裂成分が大きく出ていることから、蒸着時の基板温度が低いほど Co 固体中に拡散する Fe の量が少なくなるため、同じ蒸着

量でも10Kの試料の方がCo基板表面に生成するα-Feの膜の量 が多くなると考えられる。Si基板上に蒸着した鉄薄膜の基板温 度の違いを比較した場合も、基板温度573Kで生成した試料には FeとSiの合金(FeSiとFe₃Siと帰属)が生成し、基板温度が 297Kや10Kの試料には内部磁場分布をもつ成分が観測され、Si 固体中の様々なサイトに鉄原子が捕らえられる。また、基板温 度573KでSi基板上に蒸着した試料では膜厚の増大によりα-Fe の相が生成し、同じ基板温度であってもSi基板との化学反応は 基板表面と鉄薄膜の界面付近のみで起こることが示された。

Chemical reactions of laser deposited iron films with substrate materials. Namiki, K., Miyazaki, J., Nomura, K., Yamada, Y. 2A06

SrRu0₃ ペロブスカイトの置換効果とメスバウアースペクトル(2) (東大院工¹、Hebrew 大²、Palacy 大³)〇野村貴美¹、フェルナー・イスラエル²、 ツボリ・ラデック³、マッシュラン・ミラスラブ³、リコフ・アレキサンドル¹、 高坂 亘¹、大越慎一¹、橋本和仁¹

[はじめに]-- Felner らは鉄をドープすると 87K 以下で短距離的な磁気秩序^{1]}を示し、置換した Ca_{1-x}Sr_x RuO₃ は異なる磁気的性質を示すと報告している^{2]}。これらを検証するためにゾル・ゲル法で Ca_{1-x}Sr_xRuO₃ 粒子を作製し、Felner らの焼結試料の磁気測定結果と比較した。また、Sr(Ru_{0.5}Fe_{0.5})O₃ に おいて Sr の置換効果を調べるために磁気特性とメスバウアースペクトルを測定した。

[実験]--ゾル・ゲル法により濃縮 ⁵⁷Fe2%を含む(Ca_{1-x}Sr_x)RuO₃,ならびに Sr(Ru_{0.5}Fe_{0.5})O₃ と 5%Ba²⁺ また は Ca²⁺置換の Sr(Ru_{0.5}Fe_{0.5})O₃試料を作製した。XRD の測定および走査電子顕微鏡の観察により単相微 粉末(powder)が得られることを確認した。Ca_{1-x}Sr_xRuO₃ において x \leq 0.2 で斜方晶、x \geq 0.2 で正方晶を示 し、そのほかは正方晶であった。SQUID による磁気特性および⁵⁷Co/Cr 線源により低温メスバウアー スペクトルを測定した。

[結果]-----ゾル・ゲル法による粒径約 0.1 μ の微粉末(powder)と焼結による数 10 μ の粒子(bulk)の磁気特性 を表 1 に示す。⁵⁷Fe をドープした(Ca_{1-x},Sr_x) RuO₃ では x=0.2 以下においてワイス温度が負で反強磁性を 示す。粉末試料は保持力(H_c)が焼結試料よりかなり大きかった。Sr 置換量の増加とともに Tc 温度が 上 昇した。アイソマーシフト(IS)は 0.52-0.58mm/s であった。

θ	(K)	Peff	(μ _B)	M _{sat}	(μ _B)	H _C	(kOe)	T _c	(K)	Material
Powd	Bulk	Powd	Bulk	Powd	Bulk	Powd	Bulk	Powd	Bulk	
152	161	2.68	2.77	0.88	0.86	10.4	2.4	164	165	SrRuO ₃
109	141	2.72	2.61	0.65	0.56	11.6	3.4	138	163	Sr _{0.8} Ca _{0.2} RuO ₃
95	106	2.25	2.38	0.42	0.31	13.5	9.0	115	158	Sr _{0.6} Ca _{0.4} RuO ₃
57	47	2.17	2.51	0.21	0.28	10.4	9.5	109	147	Sr _{0.4} Ca _{0.6} RuO ₃
-81	-70	3.17	2.80	0.08	0.04	4.75	0.45	99	107	Sr _{0.2} Ca _{0.8} RuO ₃
-140	-138	3.00	2.66	0.04		3.50	0:1	75	87	CaRuO ₃

表1 ゾルゲル法による微粉末と焼結粒子の磁気特性

SrRu_{0.5}Fe_{0.5}O₃の磁化率の温度依存から反強磁性を示 し、メスバウアースペクトルではブロードな磁気分裂 ピークを示した。IS=0.42-0.48mm/s で高スピン Fe³⁺の状 態に近いが、Ru⁴⁺(4d⁴:t_{2g}⁴e⁰_g, S=1)は、Fe³⁺(S=5/2)とする と酸素イオンを通じて Ru⁵⁺(4d³:t_{2g}³e⁰_g, S=3/2)になる と考えられる。しかし、 χ T は計算値よりも小さく、 外部磁場 5kG で 1.71 (Kcm³/mol) であった。Sr サイト に 5%Ca²⁺または Ba²⁺を置換するとそれぞれ 1.25、1.24 (Kcm³/mol)でさらに小さくなった。また、内部磁場がそ れぞれ少し大きくなり、または小さくなった。Ru と Fe 原子は周期的な秩序配列をしていない。Ca 置換の場合 には局所的には化学的圧力効果により磁気的相互作用

因 1. 51(1(u0.51*00.5)()3*27 1日744430*2 世民分析

が強め合っている。これら SrRu_{0.5}Fe_{0.5}O₃は低温でスピングラス的になっていると考えられる。

[1] I. Felner, et al, Phys. Rev., B 66, 054418 (2002), [2] I. Felner, et al, Physica B 337, 310 (2003), [3]

K. Nomura, et al, ISIAME04, APS proceeding, Vol.765, pp108-113.(2005)

Substitution Effect and Mössbauer Spectra of SrRuO₃ perovskite

Nomura K., Felner I., Zboli D., Mashlan M., Rykov A., Kousaka W., Ookoshi S., Hashimoto K.

2A07

ジホスフィンとジチオールで架橋した二核金(I)錯体の¹⁹⁷Au メスバウアース ペクトル

(東邦大理)康 諭基泰,〇高橋 正,竹田満洲雄

1,1'-ビス(ジフェニルホスフィノ)フェロセン(dppf)は、フェロセン部位の配座の自由 度が高く、架橋配位子としてもキレート配位子としても働くことができる. 我々は、dppf が 架橋した二核錯体[dppf(AuCl)₂](I)を用いた多核錯体の構築をめざして研究をおこなってき た. I と S²⁻またはジチオール類(HS(CH₂)_nSH; n = 2-6)の反応によって、環状二核金(I)錯 体が得られたので、その構造と¹⁹⁷Auメスバウアースペクトルについて報告する.

Fig. 1 に, 1,3-プロパンジチオラト錯体(II) と 1,6-ヘキサンジチオラト錯体(III)の結晶 構造を示す. いずれも Au¹原子間をジチオラト配位子が架橋した構造であるが, II では aurophilicity によって Au-Au が 3.028 Å となっている. 同時に Au 周りは歪みが大きな構造 で, P-Au-S 角は 165.1°である. 同様な Au-Au 相互作用は, [dppfAu₂S]においても見られた. この相互作用は, 1,4-ブタンジチオラトよりも長いジチオールでは, 見られなくなった. III では Au-Au は 7.070 Å にまで遠ざかっていた. III では Au 周りの歪みは小さく, P-Au-S 角 は 177.4°とほぼ直線である.

JRR-4 T_Bパイプで1時間照射して作成した¹⁹⁷Pt/Pt を線源として,これらの錯体の¹⁹⁷Au メ スバウアースペクトルを 12 K で測定した.異性体シフト(線源基準: δ)と四極分裂(Δ_q) は,ジチオールの長さが延びるにつれて少しずつ増加していて,メチレン鎖からの電子の供 与が増加していることが確認できた. Sham の方法にしたがって,パラメータを解析すると, Au 6s 軌道への供与の方が, 6p 軌道への供与よりも優勢であることがわかった.またメスバ ウアーパラメータから供与された電子数を見積もってみると,ホスフィン部位の³¹P{¹H} NMR の化学シフトとよい相関が見られ (Fig. 2), NMR よりもメスバウアーパラメータの方 が変化に敏感であることがわかった.

Fig.1 Crystal Structure of II (left) and III (right)

Fig. 2 Relation between ${}^{31}P{}^{1}H$ chemical shifts and Sham's σ parameter

¹⁹⁷Au Mössbauer spectra of cyclometallated digold(I) complexes with dithiolates Dep. of Chem., Toho Univ., KANG, Y., TAKAHASHI, M., TAKEDA, M. 中性子捕獲反応によって二硫化鉄中に生成する鉄化学種の インビームメスバウアー分光法による研究

(理研,国際基督教大,東京理大,大同工大,首都大東京,阪大,原研) 小林義男,鶴岡洋児,久保謙哉,野中弘志,山田康洋,酒井陽一,〇渡辺裕夫, 荘司準,佐藤渉,篠原厚,松江秀明

【はじめに】 メスバウアー分光法は原子核の共鳴吸収法であり、物質の電子状態・化学結合・スピン 状態・磁性・相変化などの情報を与える。特に ⁵⁷Fe メスバウアー分光法は、鉄が金属、磁性体、錯体 や生体酵素まで広汎な化学形態をもつため非常に幅広く応用される。一般の分光法と同様にメスバウア ー分光法にも発光法がある。この発光法によれば、壊変によって生成した短寿命化学種の状態や反応の 非破壊的キャラクタリゼーションが可能である。インビームメスバウアー分光法は、粒子ビームを試料 に照射して核反応で生成した核種が放出する y 線を分光してその核種を含む化学種のキャラクタリゼ ーションを行う方法である。特に中性子インビームメスバウアー分光法では、固体中で特定の同位体が 選択的に高励起状態である一方、周囲の原子は室温(25meV)やそれ以下であるような極端な非平衡条件 下での化学反応を *in situ* で観察できるという特徴がある。今回半導体である二硫化鉄(FeS2)の2つの 結晶形,パイライトとマーカサイトを試料として中性子インビームメスバウアースペクトル測定を行っ たので報告する。

【方法】 実験は日本原子力研究所東海研究所の JRR-3M の即発 y 線分析装置を利用した。⁵⁶Fe(n, y)⁵⁷Fe 反応によって生成した ⁵⁷Fe の 14.4keV の第一励起準位を線源とした。熱中性子は収斂ビームを 用い、強度は 1.0x10⁸ cm²s⁻¹であった。検出器は ⁵⁷Fe 用の平行平板型電子雪崩検出器を用い、パイラ イトは市販の粉末を、マーカサイトは鉱物試料を粉砕して加圧成型して約 0.1 gcm²厚とした試料を中 性子ビームと検出器双方に対して 45 度の角度で対するように配置し測定を行った。

104

【結果と考察】 得られたマーカサイトのスペクトル (図1)はパイライトと同様に二組のダブレットで解析 され、原子核反応後の原子の反跳によって生成した新 たな成分と考えられる、*IS*=-0.16±0.06mms⁻¹、 *QS*=0.67±0.04 mms⁻¹と、ターゲット化合物に近い状 態の *IS*=0.42±0.11 mms⁻¹、*QS*=0.67±0.10mms⁻¹の 成分に分けられた。

103 102 101 100 99 -4 -3 -2 -1 0 1 2 3 4Velocity (mm/s)

この結果、マーカサイトにおいてもパイライトの場 合と同様に、原子核反応後の原子の反跳に伴う極端な

非平衡状態であっても、新たな生成化学種はメスバウアースペクトル上では一種類であった。

In-beam Mössbauer Spectroscopic Study of Iron Species Produced in Neutron-irradiated Iron Disulfides

KOBAYASHI, Y., TSURUOKA, Y., KUBO, M. K., NONAKA, H., YAMADA, Y., SAKAI, Y, WATANABE, Y., SHOJI, H., SATO, W., SHINOHARA, A., MATSUE, H.

k。標準化法を用いた中性子放射化分析 (首都大) 〇大浦泰嗣, 海老原充

中性子放射化分析法での定量に用いられる ko標準化法はシングルコンパレータ法の一種 であるが、汎用性を追求したため、絶対法に近い実験手順が必要である. すなわち、あらか じめ照射場の特性取得と検出器の計数率校正を正確に行なう必要がある.ヨーロッパを中心 に普及しているが、中国やベトナムをはじめアジア各国でも導入が進んでいる.日本では、 原研グループと東京大・大学開放研により原研炉で導入されている. 我々は,5 年前より原 研炉ならびに原研所有検出器を利用した ka法による定量を行なってきた.また,首都大所有 検出器の校正を行ない、長時間照射の場合はこれを利用している.

k。法による定量は、校正と定量を行なう専用のソフトウエア(市販または自家開発)を利 用するのが通常である. 我々はオランダ DSM 社の KAYZERO/SOLCOI (ver. 5, k-DSM)を購入し, 利用している. 最近, IAEA が開発したソフトウエア(k-IAEA)が無償公開された. これを入 手し、試用したので、我々の経験と定量値の確度について KAYZERO/SOLCOI と k₀-IAEA の比 較を中心に報告する.

検出器の校正として、基準位置での計数効率測定とピーク対トータル(PTT)比測定を行な った. PTT 比測定のための線源は(n, γ)または(γ, p)反応により製造した. k_o-IAEA 用にさらに エスケープピーク率も測定した. k_o-DSM は基準位置とともに各測定位置にて PTT 比の測定が 必要なのに対し、ko-IAEA では基準位置のみでの測定でよい. 両ソフトウエアとも幾何効率 は計算によって得る.k-IAEA の方が検出器校正は簡便であった.

照射場の特性は, Zr ならびに Au モニタにより求めた. これらより, 熱中性子束/熱外中 性子束比:fと熱外中性子束分布の1/E則からのずれ:αを得ることができる.k-IAEAでは、 さらに熱中性子のマックスウエル分布を表す中性子温度:T も必要である. これは Lu モニタ より得られる.また、ka-IAEA では速中性子束の測定も可能である.

標準試料である GSJ JSO-2(土壌)と NIES No. 9(ホンダワラ)を JRR-4 T パイプにて 20分 間照射し、適当な冷却時間をおいて4回γ線を測定した.γ線ピーク面積を Hypermet-PC に

より計算し、ko-DSM と ko-IAEA により 濃度を比較した.図1に定量値の一部 を推奨値との比として示した. k_a-DSM ではほぼ推奨値と一致する定量値を得 た. 一方, k_o-IAEA による定量値は, 特に Cr~Zn において系統的に高くな った.また、同一試料を用いた測定位 置に対する ko-IAEA による定量値は, 検出器に近くなるほど系統的に高くな ることがわかった. Cr~Zn 濃度が系統 的に高いのはこの影響と考えられるが、その原因については検討中である.

Neutron activation analysis using k_0 standardization method. OURA, Y., EBIHARA, M.

養殖マガキ軟体部の中性子放射化分析

(石巻専修大理工¹, 京都大原子炉², Dalhousie Univ. SLOWPOKE-2 (CANADA)³)○福島美智子¹, 中野幸廣², Amares CHATT³

宮城県石巻市の沿岸で養殖されているマガキの軟体部について、養殖条件のひとつである水 深別に元素濃度の比較を試みた。元素分析は中性子放射化分析で行った。また、韓国産のマ ガキについても中性子放射化分析を行い、得られた元素濃度について石巻産のものとの比較 を行った。

<試料>

宮城県石巻市東名浜において垂下式で養殖されていたマガキを、1本のロープごと海水からひき あげた。ロープに付着していたマガキのうち、海面から1m、6m、11mの水深付近のものを 採取した。水道水で表面を洗浄後、軟体部を殻からはずし、閉殻筋と肝すい腺、エラと外套膜を 組み合わせて分離した。韓国産のマガキについては閉殻筋、肝すい腺、エラ、外套膜を分離した。 蒸留水のなかで振り洗い、一夜凍結乾燥した。ミルで粉末にして、0.3-0.5gを照射用試料にした。 <中性子放射化分析>

元素分析は、京都大学原子炉実験所とダルハウジー大学・SLOWPOKE-2の研究用原子炉による中性子放射化分析で行われた。京都大学原子炉実験所では1時間照射、1月間冷却、20-30分間のガンマ線測定を行った。SLOWPOKE-2では12秒間照射、20秒間冷却、1分間アンチ コインシデンス計測システムを用いてガンマ線測定を行った。元素定量に用いた核種を表1 に示す。

<結果>

得られた結果の一例として、東名浜の異なる 水深で養殖されたマガキ軟体部の元素濃度 について以下に示す。Ag, Co, Fe, Sc, Zn 濃度 は深い水深で養殖されたマガキほど高濃度 であったが、1個体あたりの含有量に換算す ると、Fe, Se, Zn は浅い水深で養殖されたも のほど高含有量を示した。また異なる水深の マガキの濃度範囲は元素によっては2倍く らい異なることがわかった。このことより、 垂下式で養殖されたマガキのグループを濃 度で識別することは困難であることが予想 される。結果の詳細は当日述べる。

また、異なる水深がマガキに与える主な影響は、プランクトン由来であると考えられる。 今後異なる水深でのプランクトン由来の元 素濃度分布を検討したい。

Neutron Activation Analysis of Cultivated Oysters FUKUSHIMA. M., NAKANO. Y., CHATT. A.

Elements	Nuclide	Gamma ray (keV)	Half-life
Ag	Ag-110	657.8	24.6s
Br	Br - 80	616.3	17.68m
Co	Co-60	1173.2	5.27y
Cr	Cr-51	320.1	27.7d
Cu	Cu66	1039.2	5.10m
Fe	Fe-59	1099.3	44.5d
Mn	Mn-56	846.8	2.58h
Mg	Mg-27	1014.4	9.46m
Na	Na-24	1368.6	14.96h
Rb	Rb-86	1076.6	18.66d
Sb	Sb-124	602.7	60.2d
Sc	Sc-46m	142.5	18.75s
	Sc-46	889.3	83.81d
Se	Se-77m	161.9	17.45s
V	V-52	1434.1	3.75m
Zn	Zn-65	1115.6	243.9d

ヘリウムイオン照射による炭化ケイ素中での水素同位体滞留挙動への 影響

(東大RIセ¹、静岡大理放射研²、東大院工³)

○大矢恭久¹、宮内英夫²、中畑俊彦²、西川祐介²、大西祥広²、田中知³、 奥野健二²

1. はじめに

核融合構造材料候補材のひとつとして炭化ケイ素(SiC)が検討されているが、核融合炉 環境では高エネルギーのトリチウムを含む水素同位体およびヘリウム・中性子が構造材料 ヘ照射される。核融合炉安全の観点から水素同位体ホットアトム挙動を核融合炉特有の高 エネルギー粒子照射環境下で理解することは重要な問題である。そこで本研究ではヘリウ ムイオン照射による水素同位体滞留量変化および SiC の化学状態評価について検討した。

2. 実験

試料として旭硝子株式会社製の β -SiC(ROICERAM-HS)を用いた。あらかじめ 1273 Kで 真空焼鈍を行い、残留不純物を取り除いた後、室温にて 1.0 keV 重水素 (D_2^+) イオンを フラックス 1.3×10^{18} D⁺ m⁻² s⁻¹にてフルーエンス 1.01×10^{22} D⁺ m⁻²まで照射した後に 1.3 keV ヘリウム (He⁺) イオンを重水素イオンと同じ実験条件にて照射した。ヘリウムイオ ン照射時のSiCの化学状態変化をX線光電子分光法(XPS)にて明らかにした。また照射後に 重水素およびヘリウム滞留量および放出過程を昇温脱離法(TDS)にて評価するとともに等 時加熱実験によりSiC構造変化についても調べた。

3. 結果および考察

図1にヘリウムイオン照射時におけるC 1sおよびSi 2pのXPS化学シフトの結果をま とめた。重水素イオン照射により Clsは高 エネルギー側へ、Si2pは低エネルギー側へ シフトするとともに、ヘリウムイオン照射 によりさらに低エネルギー側へシフトし た。このことから捕捉された重水素がヘリ ウムイオンによりはじき出され、欠陥構造 が導入されたと考えられる。次に図2に重 水素イオンのみを注入したSiCと、重水素 イオン注入後ヘリウムイオン照射を 2.1× 10^{21} He⁺ m⁻²まで行ったSiCのTDSスペクト ルを示す。主要な放出過程は900Kおよび 1050 K付近の二つであり、それぞれSiに捕 捉された重水素およびCに捕捉された重水 素の脱離と考えられる。これらの結果より、 ヘリウムイオンを照射した場合には 900 K のピークのみが減少していることがわか った。このことより、ヘリウムイオン照射 によりSiC中に捕捉された重水素のうちSi に捕捉された重水素が主に影響を受ける ことが明らかとなった。

これらの結果から SiC 中での水素同位体挙動について検討した。

Effects on helium ion implantation for hydrogen isotope retention behavior in SiC OYA, Y., MIYAUCHI, H., NAKAHATA, T., NISHIKAWA, Y., ONISHI, Y., TANAKA, S., OKUNO, K.

固体における高エネルギーイオンのホットアトム化学的過程に関する研究(VIII) ~酸素含有ボロン薄膜に照射された高エネルギー重水素の化学的挙動の解明~ (静岡大放射研⁻¹、東大 RI センター²、核融合研⁻³) ○吉河 朗⁻¹、宮内 英夫⁻¹、 小柳津 誠⁻¹、大矢 恭久⁻²、相良 明男⁻³、野田 信明⁻³、奥野健二⁻¹

 はじめに: D-T 核融合炉内において、第一壁コンディショニングとしてボロン(ホウ素) を蒸着させるボロニゼーションが検討されている。壁に蒸着されたボロンは壁及び真空容 器内部に存在する酸素を始めとする不純物を取り込むため、D-T プラズマへの不純物の混 入を抑制する。一方、酸素を含有したボロン膜には、プラズマから高エネルギーのトリチ ウムや重水素などが打ち込まれるが、膜内に打ち込まれた際の化学状態および捕捉状態に 関する知見を得ることは核融合炉安全上にとって重要な研究課題となっている。

これまでの研究において、高純度ボロン膜中に照射された重水素は B-D-B および B-D 結合を形成し、膜内に存在していることが明らかになっているが、酸素の存在により、重 水素の捕捉状態および滞留量が変化することが考えられる。そこで本研究では、高純度ボ ロン膜および酸素を様々な割合で含有したボロン膜を調製し高エネルギーの重水素イオ ンを照射したものに対し、X線光電子分光法(XPS)および昇温脱離法(TDS)を用いることで、 酸素の存在における水素同位体の捕捉状態および滞留量への影響を評価した。

- 実験:ボロン膜の調製は、シリコン基板にデカボラン(B₁₀H₁₄純度 99.99%、第一化成社製) 蒸気 2.5 sccm をヘリウムガスで 3.8 sccm 希釈し、酸素ガス導入ラインより酸素ガスを、 流したガス全体のうち、酸素の割合を 0, 13, 22, 41%と変化させて流し、プラズマ化学蒸着 法(P-CVD)により蒸着したものを試料として用いた。その後、調製したそれぞれの膜につ いて 793 K で 10 分間加熱した後、室温で 1.0 keV の重水素イオンをフラックスおよびフ ルエンスをそれぞれ 2.0×10¹⁸ D⁺ m⁻² s⁻¹、7.3×10²¹ D⁺ m⁻² で照射した。次に、照射されたそ れぞれの膜について XPS 及び TDS を行った。
- 実験結果および考察: XPS による組成分析 の結果、ボロン膜内に酸素が各試料でそれ ぞれ1%から38%含まれることがわかった。 また、すべての膜において B-B に由来する ピークが確認された。加えて0及び13%の 時に見られなかったピークが22及び41% の時には見られた。文献値よりこのピーク は B₂O₃に由来するピークであると考えら れる[1]。また、重水素イオン照射後のXPS の結果、全ての酸素流量において半値幅の 増加が見られ、22及び41%流した試料に ついては B-B に由来するピークが高エネ ルギー側へシフトしたが、B₂O₃に由来する ピークは低エネルギー側にシフトした。

図に各酸素流量で調製したボロン膜の重水素 TDS スペクトルを示す。図より、13,22,41%において、0%に比べ高温側に広がりが見られる。ピー

ク分離の結果 B-D-B 及び B-D 結合に由来するピークの他により高温側に新たな脱離ピー クが現れた。さらに、酸素を含有させることにより B-D-B 結合が優先的に生成されるこ とがわかった。また、重水素滞留量に関しては、0 および 13%で大きな差は見られなか ったが、22 及び 41%においては、0%に比べ大きな減少が見られた。また、重水の TDS スペクトルにおいては、酸素濃度が多い試料ほど放出量は減少した。以上 XPS 及び TDS の 結果より、B₂O₃ の生成によりボロンと重水素との結合が阻害され、さらに、酸素を含ん だことにおいて重水素との新たな結合が示唆された。

[1] M.M. Ennaceur, B. Terreault J. Nucl. Mater. 280 33-38 (2000).

Studies on hot atom chemical behavior of energetic ions in solids (VIII)

 \sim Clarification of chemical behavior of energetic deuterium implanted into oxygen contained boron thin film \sim

YOSHIKAWA, A., MIYAUCHI, H., OYAIDZU, M., OYA, Y., SAGARA, A. NODA, N. and OKUNO, K.

固体におけるホットアトム化学的過程に関する研究(Ⅶ) -タングステンカーバイド中に注入された高エネルギー重水素 の化学的挙動-(静岡大理放射研¹東大RI総セ²)○五十嵐恵美¹,中畑俊彦¹, 宮内英夫¹,小柳津誠¹,大矢恭久²,奥野健二¹

<u>緒言</u>核融合炉において、プラズマ中の高熱粒子束を受けるダイバータが考えられている。 このダイバータは非常に高い熱フラックスを持つプラズマに曝されるため、候補材料として 炭素とタングステンが考えられている。高温・長時間放電でのプラズマ曝露により、両物質 は表面層でタングステンカーバイド(WC)の再堆積層を形成すると考えられている。また、 プラズマから漏出するホットアトム領域のエネルギーを持つトリチウムなどの粒子がWC中 に打ち込まれる。そこで、WC中におけるホットアトム化学の観点からの水素同位体の捕捉や 熱放出挙動の解明は非常に重要な研究課題である。

<u>実験</u> 試料として多結晶WC (アライドマテリアル製)を用いた。初めに、水素や水などの不純物ガスを除去するために、加熱処理を1373 Kで10分間行った。その後、重水素イオン(D_2^+) 照射をエネルギー1.0 keV、フラックス 1.0×10^{18} D⁺ m⁻² s⁻¹、フルエンス $0-1.0 \times 10^{22}$ D⁺ m⁻²で 323 Kにて照射した後、昇温脱離 (TDS) 測定を昇温速度 0.5 K s⁻¹として 1400 Kまで行った。また、各フルエンスでの重水素イオン照射後にX線光電子分光 (XPS) 測定を行うことで、炭素およびタングステンの組成分析および化学状態分析を行った。

<u>結果・考察</u> 各フルエンスにて重水素イオン照射した試料に関して、TDS 測定を行った。このTDS スペクトルから 300-700 K、900-1100 K に大きなピークが確認できた。このピークを解析すると、それぞれ 400、470、550、1000 K にピークトップをもつ4つのピークに分離することができた。また、これらのピークを過去に行われた高配向性熱分解グラファイト(HOPG)における同様な実験条件での結果と比較すると、1000 K のピークは炭素にトラップされた重水素であることが示唆された。

各フルエンスでのスペクトルを比較したものを 右図に示す。これより、高温側(炭素に捕捉された 重水素)のピークはフルエンスの増加に対して大き な変化は見られないのに対して、低温側(タングス テンに捕捉された重水素)のピークはフルエンスの 増加につれ、重水素の保持量も増加しているのがわ かった。

本発表では XPS 測定から得られた結果もふまえ、 高エネルギー重水素の化学的挙動に関して詳細に 議論する予定である。

照射した際の TDS スペクトル

Studies on Hot Atom Chemical Behavior of Energetic Ions in Solids(VII)

-Chemical Behavior of Energetic Deuterium Implanted into Tungsten Carbide-IGARASHI, E.¹, NAKAHATA, T.¹, MIYAUCHI, H.¹, OYAIDZU, M.¹, OYA, Y.², OKUNO, K.¹

中性子照射したメタケイ酸リチウム中に生成する

照射欠陥の消滅過程とトリチウム放出過程との相関関係

(静岡大放射研¹,九大総理工²) 〇須田泰市¹,小柳津誠¹,西川祐介¹ 宗像健三²,西川正史²,奥野健二¹

<緒言>

核融合炉を実現する上で、炉内でのトリチウム増殖は不可欠である。そのため、核融合炉 内にはトリチウムを増殖するためにブランケット構造体が組み込まれる。このブランケット 構造体はトリチウム増殖材料となるリチウム材料を含んでおり、その候補材の一つにメタケ イ酸リチウム(Li₂SiO₃)が挙げられている。

⁶Li(n, α)³H反応により生成するトリチウムは反跳エネルギー2.73 MeVの高エネルギー粒子で あるため、トリチウム増殖材料中でホットアトム反応を起こし、様々な化学状態で存在する と考えられる。本研究では、トリチウム増殖候補材であるLi₂SiO₃について、トリチウムの化 学的挙動に密接に関係すると考えられる照射欠陥の消滅過程を電子スピン共鳴(ESR)法を用 いて解明した。

<実験>

試料はLi₂SiO₃ペブルを用い、京都大学原子炉実験所の圧気輸送管Pn-2 にて中性子照射を行った。この照射における中性子フルエンスは 3.3×10¹⁵ n cm⁻²とした。照射した試料はESR測定 用セルに移し換え、真空封入した後、等時及び等温加熱実験を行った。等時加熱実験では、 試料を室温から 623 Kまで段階的に昇温し、各温度で 5 分間加熱した。一方、等温加熱実験で は、423、473、523、573Kの各温度で最大 8 時間加熱した。各実験において加熱後、ESR(日 本電子株式会社製JES-TE200)測定を液体窒素温度にて行った。

<結果・考察>

中性子照射した試料について ESR 測定を行った 結果、中性子照射により欠陥が生成したことが確 認された。欠陥は ESR スペクトルから得られた g 値より E'-センターの存在が示唆された。図は等時 加熱実験の結果である。この図より 450K 付近から ESR ピーク面積が急激に減少していることがわか った。この結果から照射欠陥が消滅する温度領域は、 約 400~600 K であることがわかった。

照射欠陥の消滅過程を速度論的に解明するため、 等温加熱実験を 423~573 Kの各温度にて行った。 本発表では、Li₂SiO₃の照射欠陥消滅過程の速度論 的考察を行う予定である。

Correlation Between Thermal Annealing Behavior of Radiation Defects and Tritium Release Behavior in Neutron-Irradiated lithium meta-silicate SUDA, T., OYAIDZU, M., NISHIKAWA, Y., MUNAKATA, K., NISHIKAWA, M., OKUNO, K.,

超臨界流体中におけるオルトポジトロニウムの消滅過程

(東北大理¹、東北放射線科学セ²、高エネ研³) 〇木野康志¹、 関根勉¹、二瓶英和¹、工藤博司²、鈴木健訓³、伊藤泰男³

物質中に入射された陽電子の振舞いを系統的に調べるため、気相から超臨界流体 相を経て液相に至る幅広い密度範囲で連続的に陽電子寿命を測定した。今回対象と した二酸化炭素(CO₂)および亜酸化窒素(N₂O)は、ともに直線三原子分子で、電子数 も等しく臨界条件も似通っている(CO₂;臨界密度 6.42 nm⁻³,温度 304.1 K, 圧力 7.38 MPa、N₂O;同 6.19 nm⁻³, 309.6 K, 7.24 MPa)。ステンレス製高圧セル中に陽電子源(²²Na) を設置し、セル内の温度(288–333 K)、圧力(6–30 MPa)を制御し、BaF₂ シンチレーシ ョン検出器を用い、同時計数法(時間分解能 FWHM=0.25 ns)により陽電子寿命測定を 行った。POSITRONFIT による陽電子寿命解析の結果、パラポジトロニウム(p-Ps, τ~0.12 ns)、自由陽電子(0.5 <τ <1 ns)、オルトポジトロニウム(o-Ps, τ>1 ns)に由来する 寿命成分が得られた。

希薄な気相領域で o-Ps のピックオフ消滅速度(λ_{oPs})は、文献値を再現した。 λ_{oPs} は 低密度では密度(ρ)と線形関係($\lambda_{oPs}=C\rho, C=4\pi r_0^2 c Z_{eff}=$ 定数)にあるが、密度の上昇と共 に直線($\lambda_{oPs}=C\rho$)から下方にずれ、臨界密度を超えた辺りでそのずれが最大になり、 高密度ではもとの直線に近づいた。これは Ps の自己束縛(self-trapping)または Ps バブ ルとして理解されている。今回さらに高密度まで測定したところ、CO₂ および N₂O のどちらの場合も消滅率は急激に上昇しこの直線を上回る高い値を示した。この現 象は自己束縛では説明できない。

高密度の気相の領域で、上述の o-Ps 成分(長寿命 o-Ps、10 < τ <100 ns)より短い寿命 を持つ別の o-Ps 成分(短寿命 o-Ps、2 < τ <15 ns)が出現し、その強度は密度の増加と共 に増加した(下図)。気相より高い密度では o-Ps に対し異なる 2 つの環境が存在する と考えられる。陽電子の消滅時刻毎にドップラー幅の測定を行ったところ、この τ_3 成 分に対し CO₂ 中では化学反応を、N₂O 中ではスピン転換反応による o-Ps のクエンチ ングを示唆する結果を得た。

図. CO₂(左)および N₂O(右)中における長寿命 o-Ps 成分強度(○印)と短寿命 o-Ps 成分 強度(△印)の密度依存性。

Ortho-positronium annihilation processes in supercritical fluids KINO, Y., SEKINE, T., NIHEI, H., KUDO, H., SUZUKI, T., ITO, Y.

y線摂動角相関法による酸化亜鉛中の局所場観察

(阪大院理) 〇齋宮芳紀, 佐藤渉, 高橋成人, 篠原厚

【はじめに】

酸化亜鉛は、圧電性・光電気伝導性・透明性など様々な物性を持つセラミックスで、光電 素子・可視〜紫外光領域の発光素子などへの応用が注目されている。この多様な物性は、酸 化亜鉛を燃焼した際に酸素が抜けZn_{1+x}Oという金属過剰の不定比を取ることに起因すると言 われている。しかし、この不定比が酸素空孔を作り出すのか、あるいは格子間亜鉛を作り出 すのかについてはいまだに統一された見解に達していない。従って、酸化亜鉛の物性と不純物 による格子欠陥の生成との関係を調べるには、原子レベルの視点で物性を観察することが必要で ある。そこで本研究では、酸化亜鉛の格子欠陥に関して微視的な情報を得るために、摂動角 相関法を用いて酸化亜鉛中にドープしたプローブの挙動を観察することによって欠陥種の同 定を試みた。

【実験】

格子欠陥の存在による物性の違いを調べるため、インジウムを 5000(ppm)ドープした ZnO(In-doped ZnO)とドープしないZnO(undoped ZnO)の二種類を測定試料とした。In-doped ZnOは、In(NO₃)₃·3H₂Oをエタノールに溶かし、ZnOを加えて撹拌した後電気炉で焼鈍(1100℃)

を行うことにより合成した。二種類の測定試料 に¹¹¹In (\rightarrow ¹¹¹Cd)を取り込ませて角相関測定を 行った。 γ 線の検出には、4本のBaF₂シンチレ ーターを用いて 90°方向と 180°方向の相関 を測定した。また、10K~673Kまで温度を変化 させて、電場勾配の温度依存性を調べた。

【結果】

角相関の異方性の時間変化を図1に示す。 undoped ZnOとIn-doped ZnOの摂動角相関測定 により室温下で異なる周波数成分が得られた (undoped ZnO:31.1MHz, In-doped ZnO:113MHz)。 これは、Inをドープしたことにより、^{III}Cdプロ ーブ周辺の環境が大きく変化したことを示して いる。また、In-doped ZnOについては振幅・周 波数成分に一様な温度依存性が観測されたのに 対し、undoped ZnOではスペクトルに顕著な温度 変化が見られなかった。本発表では、Inをドー プしたことによる電場勾配の変化、スペクトル の温度依存性などについて報告する。

図1. (a)undoped ZnOと(b)In-doped ZnOの 摂動角相関スペクトル(室温)

Perturbed angular correlation studies of ZnO ITSUKI, Y., SATO, W., TAKAHASHI, N., SHINOHARA, A.