研究発表要旨 9月24日(月)

1A01 ~1A14 : 口頭発表 A 会場

1B01 ~1B13 : 口頭発表 B 会場

104 番元素ラザホージウムのフッ化水素酸/硝酸系における

陽イオン交換樹脂への吸着挙動 (静岡大理放射研^a,茨城大院理工^b,原子力機構^c) 〇石井康雄^a,宮下直^a,森友隆^a,菅沼英夫^a,當銘勇人^b,笠松良崇^c, 豊嶋厚史^c,浅井雅人^c,西中一朗^c,塚田和明^c,永目諭一郎^c

【緒言】これまでに 104 番元素ラザホージウム(Rf)の水溶液中におけるフッ化物イオンとの相互作用 を陰イオン交換法によって調べ、6フッ化物錯体の形成が同族元素である Zr および Hf のそれよりも著 しく弱いことを明らかにてきた[1, 2]。本研究では Rf の低次フッ化物錯体の形成を調べるため、 HNO₃/HF 水溶液系における Rf の陽イオン交換挙動を 4 価の陽イオンである Zr、Hf および Th の挙動 と比較をおこなった。

【実験】原子力機構タンデム加速器を用いて、⁸⁹Y(*p*,2*n*)および¹⁷⁵Lu(*p*,*n*)反応により製造した ⁸⁸Zr(83.4 d)および¹⁷⁵Hf(70.0 d)、さらに天然ウランより分離した²³⁴Th(24.1 d)をトレーサーとし てバッチ法による陽イオン交換実験を行った。

AIDA(α 線測定装置結合型自動迅速イオン交換分離装置)を用いた加速器オンライン実験で Rf の陽イ オン交換挙動を調べた。原子力機構タンデム加速器施設において、²⁴⁸Cm(¹⁸O, 5*n*)により合成した²⁶¹Rf ($T_{1/2} = 78$ s)を He/KCl ガスジェット搬送法により AIDA へ搬送し 130 秒間捕集した。これを 250 µL の HNO₃/HF 水溶液で溶解し、1.6 mm i.d. × 7.0 mm または 1.0 mm i.d. × 3.5 mm の陽イオン交換カラムへ溶 離展開させ、その溶出液を Ta 皿に捕集した。その後、0.1 M HF/0.1 M HNO₃によってカラム中の残留 物を溶出させ、別の Ta 皿に捕集した。これらを蒸発乾固させた後、600 mm² の PIPS 検出器で²⁶¹Rf の α 線を測定しその分配係数を求めた。またイオン交換における動的条件と静的条件の検討のため、同装 置により ^{mat}Ge (¹⁸O, *xn*)および ^{mat}Gd (¹⁸O, *xn*)によって合成した¹⁶⁹Hf ($T_{1/2} = 3.42$ min)および ⁸⁵Zr ($T_{1/2} = 7.86$ min)の溶離曲線を取得しバッチ法との比較を行った。

【結果】HF/0.1 M HNO₃において Zr、Hf、Th および Rf は、フッ化物イオン濃度の増加に従いその K_d 値が減少した。これは、これらのイオンにフッ化物イオンが配位することによって、陽イオン交換樹 脂への吸着性能が減少したものと考えられる。また Rf も Zr、Hf、Th と同様にフッ化物イオンとの錯 形成をしていると考えられる。また、陽イオン交換樹脂への吸着の強さの順序は Zr ~ Hf > Rf > Th となり、これは各元素のイオン半径の大きさの順序と一致していた。発表ではフッ化物イオ ン濃度が一定条件における K_d 値の硝酸濃度依存性についても併せて報告する。

[参考文献] [1]H. Haba et al., J. Am. Chem. Soc. 126, 5219 (2004). [2] A. Toyoshima et al., submitted to Rediochim. Acta.

Adsorption behavior of element 104 rutherfordium on cation-exchange resin in HF/HNO₃ solution ISHII, Y., MIYASHITA, S., MORI, T., SUGANUMA, H., TOUME, M., KASAMATSU, Y., TOYOSHIMA, A., ASAI, M., NISHINAKA, I., TSUKADA, K., NAGAME, Y.

105 番元素 Db の HF/HNO3 混合水溶液中における化学挙動

1A02
(原子力機構¹, 茨城大院理工², 理研³, 首都大院理工⁴, 新潟大理⁵, 阪大院理⁶, 金沢大院自然⁷, 徳島大医⁸, IMP⁹, GSI¹⁰) 笠松良崇¹, O當銘勇人^{1,2}, 豊嶋厚史¹, 塚田和明¹, 浅井雅人¹, 石井康雄¹, 西中一朗¹, 佐藤哲也¹, 篠原伸夫¹, 永目諭一郎¹, 羽場宏光³, 菊永英寿³, 秋山和彦⁴, 後藤真一⁵, 石川剛⁵, 工藤久昭⁵, 佐藤渉⁶, 大江一弘⁶, 栗林隆宏⁶, 篠原厚⁶, 木下哲一⁷, 荒井美和子⁷, 横山明彦⁷, 阪間稔⁸, Z. Qin⁹, Ch. E. Düllmann¹⁰

【はじめに】

我々はこれまでに 105 番元素ドブニウム(Db)のフッ化物錯体形成を調べるため、バッチ法 により HF/HNO₃ 混合水溶液中における軽同族元素 Nb、Ta 及び擬同族元素 Pa の陰イオン交換 挙動を調べてきた[1]。本発表では、この結果をもとに開始した Db の陰イオン交換実験の予 備的な結果を報告する。

【実験】

原子力機構タンデム加速器施設において、²⁴⁸Cm(¹⁹F, 5*n*)反応により²⁶²Db(半減期 34 秒)を合成し、He/KCl ガスジェット法によりα線測定装置結合型イオン交換分離装置(AIDA)に搬送した。75 秒間捕集後、120 μL の 0.89 M HF/0.3 M HNO₃ で溶解し、陰イオン交換カラム(1.0 mm i.d. × 3.5 mm)に導入した。カラムからの溶出液をフラクション 1 として Ta 皿に捕集した。次に陰イオン交換樹脂(MCI GEL CA08Y)に吸着した²⁶²Db を 150 μL の 0.015 M HF/6 M HNO₃ で溶出し、その溶出液をフラクション 2 として別の Ta 皿に捕集した。これらの試料を He ガス及びハロゲンランプを用いて蒸発乾固し、²⁶²Db もしくはその娘核種²⁵⁸Lr からのα線を PIPS 検出器を用いて測定した。また、^{nat}Ge(¹⁹F, *xn*)、^{nat}Gd(¹⁹F, *xn*)反応で合成した⁸⁸Nb(14.3 分)及び¹⁷⁰Ta(6.76 分)の溶離挙動も Db と同じ条件下で調べた。

【結果と考察】

陰イオン交換実験を約 3000 回繰り返して行った結果、 262 Db もしくはその娘核種 258 Lr 起源 の α 線エネルギー領域において総計 11 カウント観測した。陰イオン交換樹脂に 88 Nb が約 76%、 170 Ta が 99%以上吸着したのに対し、 262 Db の吸着率は 70%以下であった。0.89 M HF/0.3 M HNO₃([F] = 3 × 10⁻³ M)の濃度条件では、陰イオン交換樹脂に対する吸着率の順列が Ta > Nb ~ Db となることがわかった。

参考文献 [1] 笠松他、第50回放射化学討論会 4P14(2006).

Chemical behavior of element-105, Db, in mixed HF/HNO3 solutions

KASAMATSU, Y., TOUME, H., TOYOSHIMA, A., TSUKADA, K., ASAI, M., ISHII, Y., NISHINAKA, I., SATO, T. K., SHINOHARA. N., NAGAME, Y., HABA, H., KIKUNAGA, H., AKIYAMA, K., GOTO, S., ISHIKAWA, T., KUDO, H., SATO, W., OOE, K., KURIBAYASHI, T., SHINOHARA, A., KINOSHITA, N., ARAI, M., YOKOYAMA, A., SAKAMA, M., QIN, Z., DÜLLMANN, CH. E.

11A03

カーボンクラスター搬送を用いた4族元素の気相化学実験

(新潟大理¹・機器分析セ²・原子力機構³)○石川剛¹,後藤真一², 工藤久昭¹,豊嶋厚史³,塚田和明³,浅井雅人³,永目諭一郎³

[はじめに] これまで Rf の化学的性質を調べるため4族元素塩化物の気相化学実験に取り組んできた。搬送法として He ガスと KCl エアロゾルを用い、反応剤に HCl を使った場合、系内の残留酸素による不揮発性酸化塩化物の生成や KCl による石英カラムの劣化が問題となっていた。そこで KCl の代わりに、酸素除去効果の高いカーボンクラスターをエアロゾルとして用いたところ、²⁵²Cf の核分裂生成物を用いた実験では、搬送効率は KCl を用いた場合とほぼ同等の結果であり、また、揮発性化合物の生成が確認できたので、カーボンクラスターによるガスジェット搬送はオンライン実験に十分適用できることが示唆された[1]。本発表では、Zr, Hf を用いたオンライン実験の結果について報告し、Rf の気相化学実験への適用について議論する。

念図を Fig. 1 に示した。上記の反応で合成された核種はカーボンクラスターに乗って反応室 に送られる。反応室で反応剤HClによって揮発性化合物になり、450℃に加熱された等温カラ ムを通って HPGe 検出器の前で冷却捕集される。様々な条件下で直接捕集との比較による反 応効率を beam-on と同時に測定を開始する growth と beam-off 後の decay の測定とともに行な った。

[結果と考察] 直接捕集では Eu ターゲットに含まれる Sm によって合成される Lu が検出され たが、気相化学実験ではHf の子として生成するものしか検出されなかったので、不揮発性の 化合物の分離がしっかりおこなわれていることが確認できた。最適な条件下で Zr, Hf の反応 効率はそれぞれ約 15%と約 40%だった。KCl では Zr, Hf 共に反応効率は約 5%であり、カーボ ンクラスターの酸素除去効果によるものと考えられる。しかし、反応剤に Cl₂/CCl₄ を用いた 場合の反応効率は 80%であり、反応条件についてさらに検討する必要がある。 [1]石川 他、第 50 回放射化学討論会

Gas phase chemistry of the group-4 elements using carbon cluster transport system ISHIKAWA, T., GOTO, S., KUDO, H., TOYOSHIMA, A., TSUKADA, K., ASAI, M., NAGAME, Y.

11404 Ba+¹⁶**O**, **La**+¹⁶**O** 系重イオン核融合反応による重元素合成のための研究(Ⅱ) (金沢大院自然¹, 金沢大理², 高エネ研³, 阪大院理⁴, 阪大 RI セ⁵)○荒井美和子¹, 南里朋洋¹, 浅野敦史², 木下哲一³, 大江一弘⁴, 高橋 成人⁴, 斎藤直⁵, 横山明彦¹

【序】重元素合成は、新元素合成や新同位体合成、または核壊変・核構造などの核化学・核 物理研究のために重要な研究手法であり、低エネルギーの重イオン核融合反応がよく利用さ れる。二つの原子核が融合するとき、励起状態の高い複合核をつくる。複合核が軽粒子放出 でエネルギーを放出すれば、残留核として重元素が合成される。近年注目されている超アク チノイド元素合成においても精密な反応機構の理解が必要となっている。そのためには、核 融合反応断面積の基礎的データが重要である。本研究では、アクチノイドと同様に変形核で あるランタノイド近傍の、Ba及びLaをターゲットとして、¹⁶Oとの核融合反応実験を行い、 昨年放射化学討論会で励起関数の一部について報告した。しかし、報告したデータについて は、エネルギーとビーム量の較正の問題、短寿命な生成核種が測定されてないという問題点 があった。そこで今回これらの不足を補う行うための実験を行った。そして求めた反応生成 物の放射能から断面積を計算し、理論的な励起関数と比較した。

【実験】照射は大阪大学核物理研究センターにて、¹⁶O イオンを用いて行った。入射エネルギ ーの確認のために、Rh ターゲットでの照射を行い、データを文献値と比較した。また、ビー ム量の較正は Al によるモニター反応を利用するので、Al ターゲットを Au キャッチャーとあ わせて照射することによって反跳成分の補正を行った。短寿命生成核種の測定のためには、 以下のようなガスジェット搬送システムを用いた照射を行った。天然同位体組成の La をアル ミホイルに電着してターゲットを調製した。このターゲットに¹⁶O⁶⁺イオンを照射した。反応 生成物は生成後すぐにガスジェット搬送システムを用いて実験室まで搬送された。ここで、 直径 55 mm 長さ 55 mm である円筒形の反跳チャンバーで得た生成物は、KCl クラスターに吸 着され、He ガスとともにキャピラリーチューブによって 70 m 離れた実験室までメカニカル ブースターポンプにて搬送された。その後、生成物をフィルターで捕集し、Ge 検出器を用い たッ線測定を繰り返して生成物の同定と定量を行った。

【結果と考察】Rhターゲットへの¹⁶Oの照射より、 ビームエネルギーに大きなずれはないことが確認 できた。ただし、計算コード SRIM でのエネルギ ー損失の計算を再検討し、入射エネルギーを求め 直した。反跳成分の補正実験では、約 40 %の反 跳がみられた。また、今回のγ線測定の結果、新 たに同定された短寿命核種とそれぞれの半減期を 右の表に示す。以上の結果をあわせて現在正確な 励起関数について検討している。

表 La+¹⁶O 核融合反応で同定された

湿寿印生成核性とてい)半减别
------------	------

核種	半減期
¹⁵² Tb	4.2 m
¹⁵⁰ Tb	5.8 m
¹⁴⁹ Tb	4.16 m
¹⁴⁸ Tb	2.2 m, 60 m
¹⁴⁷ Tb	1.87 m

Study on the synthesis of heavy elements using the Ba+¹⁶O and La+¹⁶O reaction systems(II) ARAI, M., NANRI, T., ASANO, A., KINOSHITA, N., OE, K., TAKAHASHI, N., SAITO, T., YOKOYAMA, A.

(東工大原子炉研) 〇野村雅夫、鈴木達也、藤井靖彦

【緒 言】安定同位体の基となる化学平衡の同位体効果は分子内の原子による振動の量子効 果に起因すると理論的に説明されてきた。しかし近年、特に原子価等化学種間の電子状態が 大きく変化する場合は核と電子間の作用による核内電場効果により、いわゆる発光スペクト ルで観察される Field Shift 同位体効果が化学平衡においても生じる事が分かってきた。本研 究ではウラン酸化還元イオン交換クロマトグラフィー実験における各同位体間の分離係数 (ϵ)と、各ウラン同位体の核電荷半径< \mathbf{r}^2 >との相関関係についての検討、およびその他元素 についての錯体反応においても、同様な相関関係の存在が確認できるかどうか比較検討する。

【実 験】ウラン酸化還元イオン交換クロマトグラフィーでは、陰イオン交換樹脂を用いた U(IV)-U(VI)の交換反応を利用した実験である¹⁾。その他元素の錯体反応を利用したクロマト グラフィーでは、陽イオン交換樹脂をガラス製のカラム(直径 0.8 又は 1cm、長さ 100cm、 5本程度)に充填し、元素を吸着させ、錯形成剤で溶離展開して置換クロマトグラフィーで、 所定の展開距離泳動後、フラクションコレクターで流出液を分取した実験である。

【結果および考察】クロマトグラフィーの結果に ついて、フラクション別に収集された試料の同位 体の濃縮係数を求め、さらに、3同位体プロット から傾き θ を求めた¹⁾。その θ と各同位体の質量 差について Fig.1 に示す。また、同位体 238,236 ペ アを1とした相対的な $\delta < r^2 >$ についても示した。 その他元素、Pb について、野村,他(1999)の報 告では、²⁰⁷Pbのみ体積効果の示唆をしている²⁾。 今回、再評価をおこない、各同位体間の同位体効 果と各同位体の核電荷半径の差($\delta < r^2 >$)との 相関関係から、錯体反応においてもウランと同様 の同位体効果の存在が示唆された。

Fig. 1. The relation among the mass difference and the slope of the three-isotope plot, θ , and relative value $\delta < r^2 >$.

また、Gd についても、測定されたデータ³⁾等か

ら θ の計算、各同位体間の同位体効果と各同位体の核電荷半径の差(δ < r²>)との相関関係 から、ウランと同様の検討をした。

【参考文献】

1): M. Nomura, et al., J. Am. Chem. Soc., 118, 9127-9130 (1996)

2):野村雅夫,他,第47回質量分析総合討論会 講演要旨集 1-O3-07,84-85 (1999)

3) : J. Chen, et al., J. Nucl. Sci. Technol., 29, 1086-1092 (1992)

Some examples on the relation between isotope effects and nuclear charge radii in chemical reactions NOMURA M., SUZUKI T., FUJII Y.

²³³U 陽子誘起核分裂特性 - 放出中性子と核電荷分極-

11A06

(1原子力機構先端研、²東大理、³都立大名誉教授) ○西中一朗¹、谷川勝至²、永目諭一郎¹、中原弘道³

核分裂によって大きな原子核が二つに分かれる瞬間、生成する2つの分裂片間でどのよう に励起エネルギー、質量、核電荷が分配されるのだろうか?この基本的な疑問に対して、核 分裂機構解明を目指した実験的、理論的研究が盛んに行われてきた。核分裂で生成する分裂 片の質量分布、運動エネルギー分布、放出中性子数など様々な物理量の測定が行われている が、実験の困難さのため、分裂片からの放出中性子数について信頼の高いデータは極めて少 ない。放出中性子数は、分裂片間での励起エネルギーや核電荷の分配を調べる上で重要な物 理量である。そのため、励起エネルギーと核電荷の分配機構は、いまだ未解決な研究課題で ある。²³²Th陽子誘起核分裂については、放射化学的手法で求めた核分裂生成物の生成断面積、 および飛行時間測定法で求めた分裂片の質量分布と放出中性子数について信頼性の高い実験 データがある[1]。最近、これらの実験データを改めて解析し直すことで、分裂片間での核電

荷分極を精度よく調べることができた。その結果、原子核の液滴的性質と陽子数 50 に基づく 設効果が、核電荷の分配に重要な役割を果たしていることが解った[2]。今回、²³³U 陽子誘起 核分裂について放出中性子数と核電荷分極について解析したので報告する。

²³³U 陽子誘起核分裂において二重飛行時間測定法で求めた分裂片の飛行時間データ[3]に基づいて、分裂片からの放出中性子数を分裂片質量数の関数として求めた(図1)。それは

sawtooth 構造と呼ばれる質量依存性を示すが、文献値[4] に比べて小さな値であった。これらのデータを核分裂過 程のエネルギー平衡の観点から評価し、本研究のデータ が最も信頼できることを確認した。この放出中性子数と 分裂片の質量分布、核分裂生成物の生成断面積[5]から、 核電荷分極の大きさを表すパラメータ dZ を求め、分裂片 質量数の関数として図2に示した。dZ は分裂核と同じ核 電荷密度から予測される核電荷の値(分極がない時の値) からの差を示す。実験値から求めた核電荷分極 dZ が、 原子核の液滴模型と陽子数 Z = 50 の殻効果から期待され る傾向とよく一致していることがわかる。

講演では、データ解析について解説し、²³³U 熱中性子 核分裂、²³²Th 陽子誘起核分裂の文献値との比較から、励 起エネルギー分配や核電荷分極について議論する。

参考文献

[1] H. Kudo et al., Phys. Rev. C 25, 3011 (1982); I. Nishinaka et al., Phys. Rev. C 70, 0146090 (2004).

[2] 西中他, 第 49 回放射化学討論会 1A01, (2005); I. Nishinaka et al., Eur. Phys. J. A (in press).

[3] I. Nishinaka et al., Int. Nucl. Phys. Conf. 2007 (INPC2007) G2-5, (2007).

[4] C. J. Bishop *et al.*, Nucl. Phys. A **150**, 129 (1970); S. C. Burnett *et al.*, Phys. Rev. C **3**, 2034 (1971).
[5] T. Ohtsuki *et al.*, Phys. Rev. C **44**, 1405 (1991).

Characteristics of neutron multiplicity and nuclear charge polarization in proton-induced fission of ²³³U NISHINAKA, I., TANIKAWA, M., NAGAME, Y., NAKAHARA, H.

11A07

^{99m}Tc の半減期精密測定

(理研仁科セ,東北大・核理研,京大炉,原子力機構,金沢大院自然, 東北大・多元研,東北大高教セ) 〇菊永英寿,広瀬健太郎,大槻勤, 高宮幸一,笠松良崇,中西孝,三頭聰明,関根勉

【はじめに】これまでに⁷Be から^{235m}U までの約 10 核種が,化学形により半減期が変化する と報告されている。近年,⁷Be について国内では T. Ohtsuki *et al.*[1]が,また国外では Y. Nir-El *et al.*[2]他,数グループが金属中,酸化物,フラーレン中など多様な化学形で精密な半減期測 定を行ない,Be 原子の化学状態と半減期の関係について興味深い結果を出し始めている。一 方,本研究対象である^{99m}Tc では 1950 年代に K. T. Bainbridge *et al.*[3]が初めて,KTcO₄, Tc₂S₇, ReTcS₇, Tc(metal)の4 化学形で半減期変化を観測した。しかし,その後は 1980 年に H. Mazaki *et al.*[4]により追試が行なわれたのみであり,実験例は少ない。本研究では^{99m}Tc についてよ り多くの化学形で半減期を測定することを計画しており,今回最初の実験としてKTcO₄, Tc₂S₇ の化学形で半減期を測定したので報告する。

【実験】約5 mg の ¹⁰⁰Mo を東北大学原子核理学研究施設の電子ライナックを用いて最大エネ ルギー50 MeV の制動放射線で水冷しながら8時間照射した。照射後の Mo 同位体を陰イオン 交換カラム法で精製した後,22時間放置して ^{99m}Tc を成長させた。生成した ^{99m}Tc を Mo 同位 体から陰イオン交換カラムとアルミナカラムを用いて分離・精製した。それを KTcO₄, Tc₂S₇ の各化学形の線源に調整して γ 線スペクトロメトリーを行った。測定は文献[1]と同様の装置

を用いて, KTcO₄ と Tc₂S₇の線源を交互に 60 時 間以上測定した。また ¹³⁷Cs を参照線源として同 時に測定し, pile-up 等の補正を行った。

【結果】得られたスペクトル例を図に示す。Tc -99mの親核である⁹⁹Moの光電ピークは認めら れず,スペクトル及び壊変曲線から^{99m}Tcの半減 期測定に影響を与えない程度まで⁹⁹Moが除去 できていることが確認できた。また,KTcO4形 とTc₂S7形で測定した^{99m}Tcの半減期を比べると Tc₂S7形で測定した半減期が長くなり,このこと は文献[3,4]と一致している。詳細な半減期はそ の他の化学形で測定した値も含め,討論会にお いて報告する。

【参考文献】[1] T. Ohtsuki *et al.*, Phys. Rev. Lett. **93**, 112501 (2004); *ibid.* **98**, 252501 (2007); [2] Y. Nir-El *et al.*, Phys. Rev. C **93**, 012801(R) (2007); [3] K. T. Bainbridge *et al.*, Phys. Rev. **90**, 430 (1953); [4] H. Mazaki *et al.*, Phys. Rev. C **21**, 344 (1980)

Precision measurement of the half-life of ^{99m}Tc

Kikunaga, H., Hirose, K., Ohtsuki, T., Takamiya, K., Kasamatsu, Y., Nakanishi, T., Mitsugashira, T., Sekine, T.

11A08

新富士火山および伊豆大島火山噴出物中の²³⁸U-²³⁰Th-²²⁶Ra 放射非平衡

(明治大理工) 〇栗原 雄一、高橋 賢臣、佐藤 純

1. 緒 言

島弧のマグマは、沈み込む海洋プレートから放出される流体とマントルとの相互作用によって発生 すると考えられている。ウランおよびラジウムはトリウムに比べて流体によって移動しやすいため、 島弧の火山噴出物中では、ウラン系列の ²³⁸U-²³⁰Th-²²⁶Ra 間は、²³⁸U と ²²⁶Ra が多い ²³⁰Th/²³⁸U < 1, ²²⁶Ra/²³⁰Th > 1 の放射非平衡になることが想定される。これまでに、伊豆弧に属する三宅島の火山噴 出物中では、²³⁸U と ²²⁶Ra が多い ²³⁰Th/²³⁸U <1, ²²⁶Ra/²³⁰Th > 1 の放射非平衡が観測されている¹⁾。我々 は、伊豆弧に属する新富士火山および伊豆大島火山噴出物中の ²³⁰Th/²³⁸U, ²²⁶Ra/²³⁰Th の放射能強度比 の観測を行った。

2. 試料・実験操作

試料には、新富士火山および伊豆大島火山の噴出物を用いた。試料は精粉砕した後、 HF-HCIO₄-HNO₃ の混酸により分解した。試料中のウランとトリウムは、陰イオン交換樹脂を用いて 分離し、UTEVA Spec. resin と TEVA Spec. resin によりそれぞれを精製した後、ステンレス皿に電着 してアルファ線スペクトロメトリ用の線源を作製し、同位体希釈分析法により定量した。一方、試料 中の²²⁶Ra は試料を測定容器に入れて密封し、²²⁶Ra の娘核種が放射平衡に達するまで 30 日以上保 管した後、²¹⁴Pb の 351 keV の ガンマ線を分析線としてガンマ線スペクトロメトリにより定量した。 3. 結果・考察

表に岩石標準試料である JB-1a, b の ²³⁸U, ²³⁰Th, ²²⁶Ra および ²³²Th の比放射能とウラン系列核種 間の放射能強度比を掲げる。

Somula	Specific activity [mBq g ⁻¹]				Activity ratio		
Sample	²³⁸ U	²³⁰ Th	²²⁶ Ra	²³² Th	²³⁴ U/ ²³⁸ U	230Th/238U	²²⁶ Ra/ ²³⁰ Th
JB-1a	20.5 ± 0.3	20.5 ± 0.2	-	36.4 ± 0.5	1.00 ± 0.01	1.00 ± 0.01	-
JB-1b	-	-	20.5 ± 0.4	-	-	-	1.00 ± 0.02
Imai <i>et al.</i> ²⁾	19.5	-	-	36.7	-	-	-

Table U- Th-Ra data for the GSJ rock reference materials, JB-1a, b

岩石標準試料のウランとトリウムの定量結果は、推奨値に近い値であった。また、ウラン系列核種間は放射平衡に達していることが確認できた。

図に (²²⁶Ra²³⁰Th)₀-(²³⁸U/²³⁰Th) の放射能強度比ダイアグラム を示す。新富士火山および伊豆大島火山噴出物中の ²³⁸U-²³⁰Th-²²⁶Ra 間は、²³⁰Th に比べて ²³⁸U と ²²⁶Ra が多い ²³⁰Th²³⁸U < 1, ²²⁶Ra/²³⁰Th > 1 放射非平衡であった。これは、ウラ ンおよびラジウムはトリウムに比べて流体によって移動しや すいため、沈み込むプレートから放出される流体によって、マ ントルに多く添加されたためであると考えられる。

参考文献

- 1) T. Yokoyama, K. Kobayashi, T. Kuritani, and E. Nakamura, *J. Geophys. Res.*, **108**, doi:1029/2002JB002103 (2003)
- 2) N. Imai, S. Terashima, S. Itoh and A. Ando, *Geochem. J.*, **29**, 91-95 (1995)

²³⁸U-²³⁰Th-²²⁶Ra radioactive disequilibria in the volcanic products from younger Fuji and Izu-Oshima volcanoes KURIHARA, Y., TAKAHASHI, M. and SATO, J.

石質隕石中の³⁶C1 生成率

11A09

(首都大院理工¹, 筑波大², 高エネ研³) 〇大浦泰嗣¹, 山崎俊輔¹, 橋詰二 三雄¹, 海老原充¹, 戸崎裕貴², 笹公和², 長島泰夫², 高橋努², 松四雄騎², 玉理 美智子², 末木啓介², 松村宏³, 別所光太郎³, 三浦太一³

隕石中に存在する宇宙線生成核種は、照射年代などの年代測定や、宇宙空間での大きさの 推定など、宇宙化学的に重要な役割を果たしている.³⁶C1(半減期 30 万年,β⁻壊変)は宇宙線 生成核種の一つで、南極産石質隕石の金属(Fe/Ni 合金)相を用いた落下年代測定によく用い られる.しかし、³⁶C1はFeやNiの核破砕反応以外にもケイ酸塩相に多く含まれるKやCaな どからも核破砕反応により生成し、さらに、二次中性子による捕獲反応により塩素からも生 成していると考えられる.これらの標的元素での陽子による核破砕反応の励起曲線は標的ご とに系統的に変化しており、隕石中での標的元素それぞれの³⁶C1生成率を求めることで、宇 宙線照射環境を詳しく推定できる可能性がある.そこで、異なる石質隕石を用いて、標的元 素ごとの³⁶C1生成率の測定を試みた.

Barwell 石質隕石と Allegan 石質隕石を用いて,まず,物理的ならびに化学的方法により 金属相とケイ酸塩相5相に分離した.これら各相の主要元素組成を中性子放射化分析法で調 べた.塩素濃度に関しては放射化学的光量子放射化分析法により定量中である.また、³⁶C1 濃度は、各鉱物相から塩素を AgC1 として化学分離した後,筑波大学タンデム加速器による加 速器質量分析計により求めた.

Barwell 隕石での全岩中³⁶Cl 濃度は 8.1 dpm/kg で、 金属相ではこれより高く 22.4 dpm/kg であり、ケイ酸塩相では 6.83 - 8.67 dpm/kg であった. Allegan 隕石の³⁶Cl 濃度も ほぼ同様な傾向であった. 全岩ならびに各鉱 物相の元素組成と³⁶C1 濃度を用いた連立方程 式により各元素からの生成率を計算したが, 妥当な値を得られなかった. そこで,³⁶C1 生 成への寄与が大きいと考えられる2つの元素 群, (K+Ca)と(Fe+Ni), の生成率を推定した. Fig.1 に Barwell 隕石における元素濃度に対 して³⁶C1 濃度をプロットした.³⁶C1 濃度は (K+Ca) 濃度とともに増加し, (Fe+Ni) 濃度の増 加につれて減少する.一次式で近似し、元素 濃度が 100%での切片より, (K+Ca)と(Fe+Ni) の生成率として 247 dpm/kg と 25 dpm/kg をそ れぞれ得た.この約10倍の差は、励起関数で

rig.1. Concentration vs. target elementa concentration for the Barwell meteorite.

は,陽子エネルギー200-300MeV に相当する. Allegan 隕石での生成率は,それぞれ 234 dpm/kg と 24 dpm/kg であり,2 つの隕石でほぼ同じ値が得られた. 今後,塩素による寄与の程度を 検討するとともに,同じ隕石で深さが異なる試料での生成率を調べていきたい.

Production rate of ³⁶Cl in chondritic meteorites.

OURA, Y., YAMAZAKI S., HASHIZUME F., EBIHARA M., TOSAKI Y., SASA K., NAGASHIMA Y., TAKAHASHI T., MATSUSHI Y., TAMARI M., SUEKI K., MATSUMURA H., BESSHO K., MIURA T.

南極ドームふじ氷床コア(浅層)中の Be-10 の加速器質量分析 (AMS)

11**A**100

(¹学習院大理、²弘前大工、³東大工、⁴極地研) 〇村松康行¹、保科真弓¹、堀内一穂²、松崎浩之³、本山秀明⁴

<序論>

¹⁰Be(半減期 150 万年)は宇宙線と酸素や窒素原子との相互作用により、大気中で生成されている。地球に入射する宇宙線は太陽風や地球磁場の影響を受けるため、生成核種の量は それに伴い変化する。極地の氷床中には過去に生成された¹⁰Be が降雪とともに積もっており、 過去の生成量に関する情報が記録されている。

本研究では、南極ドームふじ氷床コア(浅層コア)中の¹⁰Be を加速器質量分析法(AMS) により定量し、その深度分布に関する情報を得る。分析結果より、過去における¹⁰Be の生成 量の変化を調べ、太陽活動などの変動との関係を考察する。 <実験>

AMS 測定の際に¹⁰Be と同重体である¹⁰Bが妨害となるため、陽イオン交換樹脂(MCI GEL CK08P 75-150µm)を用い分離条件を調べた。今回の分析では試料はドームふじで採取した氷床コ ア 60 サンプル(深度:95m-122m;暫定年代:紀元前 1100 年から 238 年に相当)を用いた。 陽イオン交換樹脂により Be を分離した後、Be(OH)₂の沈殿を作成し,それを 850℃で焼いて Be0 とした。これを東京大学の AMS で ¹⁰Be/⁹Be 比を測定し、濃度を求めた。また、氷中の微 量の安定 Be (⁹Be) 濃度を調べるため、ICP-MS を用い分析法の検討も行った。 <結果>

AMS の測定結果から、 $\times 1$ g 中の ¹⁰Be 濃度を求め、さらに雪の堆積速度を考慮し ¹⁰Be フラ ックス(単位面積 cm² に年間堆積する原子数)を計算した。結果を図に示す。 ¹⁰Be のフラッ クスは約 20×10⁴ から 40×10⁴ atoms/cm²/y の間で変動していることがわかった。弥生時代前 期(B.C. 700 年付近)に ¹⁰Be のピークが認められ、これは太陽活動や地磁気の低下などによ り宇宙線の強度が上昇したためと考えられる。発表では、得られた ¹⁰Be の経年変化を、樹木 の年輪などの研究から求められている ¹⁴C 濃度のデータとも比べて議論する予定である。

AMS analysis of Be-10 in ice core collected from Dome Fuji MURAMATSU Y., HOSHINA M., HORIUCHI K., MATSUZAKI H., MOTOYAMA H.

11人111 青森県沖の粒子態 Th、Pu の鉛直分布

(放医研)○大久保 綾子、鄭 建、中西 貴宏、青野 辰雄、山田 正俊、日下部 正志、帰山 秀樹

【はじめに】

大気核実験や核燃料再処理施設から放出されたプルトニウム同位体は、海洋における物質循環の有用 なトレーサーとなることから、これまで多くの研究が行なわれてきた。最近では、表面電離型質量分析法 および誘導結合プラズマ質量分析法の開発により、アルファ線計測法では困難であった²⁴⁰Pu/²³⁹Pu 同位対 比の測定が環境試料について行なわれ、プルトニウムの起源の同定に用いられている。

海水中のプルトニウムは、粒子濃度の高い沿岸海域においても、多くは溶存態で存在することが報告 されているが(Dai et al., 2001)、海洋でのプルトニウムの輸送過程を把握する目的で、セジメントトラッ プ実験による粒子態プルトニウムの研究が行なわれてきた。本研究では、2006 年 3 月に核燃料再処理施 設の試運転が始まった青森県六ヶ所村の沿岸域における、バックグラウンドレベルの粒子態プルトニウム の分布を把握することを目的とし、調査を行なった。

【試料と方法】

2005 年 6 月の六ヶ所村沖における調査航海では、現場型大量濾過装置を用いて、各層 5000 Lの濾過 を行い、大粒子 (>70µm) および小粒子試料 (1-70µm) を採取した。試料は実験室において全分解した 後、陰イオン交換樹脂を用いてトリウムおよびプルトニウムを精製し、誘導結合プラズマ質量分析装置 (Finnigan Element 2) を用いてプルトニウム同位体 (²³⁹Pu, ²⁴⁰Pu) を測定した。トリウム同位体はアルファ線 スペクトロメーターおよびベータ線カウンターで測定をした。

【結果と考察】

大粒子・小粒子中の²⁴⁰Pu/²³⁹Pu 同位対比は、0.196-0.237の範囲にあった。これらの値は、西部北太 平洋の表面海水について報告された値 (0.199-0.225) (Norisuye et al, 2006, Yamada et al., 2006) に一致し、 global fallout (0.180) に比べて高い値であった。

大粒子中の²³⁹⁺²⁴⁰Pu 比放射能は、小粒子中の値に比べて低かった。これは、大粒子に比べて小粒子の 比表面積が大きいためであると考えられる。また、別の原因としては、粒子に含まれる有機物の溶存物質 への再生がプルトニウムの再生に比べて速いことが考えられた。言い換えると、古い粒子ほど高い²³⁹⁺²⁴⁰Pu 比放射能を持つといえる。

大粒子中の²³⁰Th 比放射能は、生物生産の活発な有光層で低く、有光層直下から深層にかけてほぼ一定の値となった。有光層内では生物起源粒子による希釈の影響が大きいと考えられる。講演の中では、²³⁰Th の鉛直分布から推定した Pu 同位体フラックスの結果について議論する。

Vertical distribution of particulate Th and Pu off Aomori Okubo, A., Zheng, J., Nakanishi, T., Aono, T., Yamada, M., Kusakabe, M., Kaeriyama, H.

11A12

海水中の有機物の挙動と放射性核種相互の関係 (静岡大・放医研・環境科技研・金沢大)〇鈴木 款、青野辰雄、 石川義郎、山本政義

地球温暖化等の環境変動に伴い海洋および陸上の生態系がどのように変化あるいは応答するの かを理解することは極めて重要な課題である。海洋の低次生態系は栄養塩(硝酸塩、リン酸塩、 鉄等)、植物プランクトン、動物プランクトン、微生物、原生動物により構成されている。海水中 の有機物は粒子態および溶存態、さらには粒子態有機物は様々なサイズ、溶存有機物は様々な分 子量およびコロイド部分に分けられる。これらの複雑な有機物の生産速度、分解速度、沈降速度、 粒子化速度および捕食速度を知ることはCO2および栄養塩とのバランスおよび海洋生態系の維持 機構を理解する上で極めて重要である。そのために、近年有機物の実態解明に関する研究は活発 に行われている。この変化の激しい有機物の挙動を短寿命放射性核種を用いて研究し、それらの 研究から海洋の生態系、特に低次生態系の安定性とダイナミックスに関する研究を行うことが目 的である。海洋の有機物動態の複雑なシステムを定量的に把握するためには、有機物の分解速度、 あるいは年齢の測定と有機物の変化に関係する分解あるいは補食の過程を区別する研究が必要で ある。この研究をする手段として、天然に存在している放射性同位体の幾つかを同時に測定すること により新たな段階を切り開くことができる。特に短寿命の放射性核種である、P-32、Th-234、Pb-210 の測定と有機物のサイズ別分画を組み合わせすることにより、粒子状有機物、植物、動物プランクト ン、微生物の間の有機物動態の時間スケールを明らかにすることが目的である。実験場所として静 岡大学の目の前が駿河湾であり、駿河湾は海洋研究の場所としては、外洋性の湾として、本研究 をするのに適している。調査船としては静岡県水産試験所の駿河丸が定期的に利用できる。また、 駿河湾の表層、380mもよび 680mの海水は常時ポンプにより汲み上げられている。焼津の水産試験 所内に500Lの水槽がすでに設置されている。本水槽に海水を入れてメソコスム実験を行う。こ れらの実験装置と現場観測により、海水中の有機物を粒子および溶存に、粒子をサイズ別(2μ m, 0.4 µm) に分けて捕集濃縮する。これらの捕集した有機物中の炭素/窒素、有機物成分およ び実験時のプランクトン種、バクテリアとP-32/33, Pb-210/Po-210, Th-234、の放射性核種を測定 する。研究結果から、粒子態²³⁴Thの 80%が 0.6-500 µm 粒子画分にあった。実験開始から生物 の活動が著しく大きくなるまでの期間は、0.6-500 µm 粒子サイズの²³⁴Thが約 150 dpm/m³/day の割合で除去される。クロロフィル濃度が著しく上昇した期間(プランクトンブルーム初期) は、粒子態²³⁴Thの海水からの除去割合が極めて小さくなる。一方³²Pは深さと共に減少し、 粒子態有機物の回転速度を計算すると11日から30日程度であることが明らかになった。 これらの回転速度は季節により異なる。有機物生産の高い時期には回転速度は速いことが示 唆された。

Co relationship on the behaviors between radionuclide and organic matter in seawater SUZUKI Y., AONO T, ISHIKAWA Y., YAMAMOTO M.

11A144

花火を用いた放射線教育

(六文協¹,青い森・科学 BBL²)石川とみゑ 1, 二本柳晴子 1, 小笠原春枝 1, 槇 さち 2, 對馬和子 2, 長内侑子 2, 〇荒谷美智 1,2

【はじめに】放射線は、原子または原子核から出ると考えてよいが、原子は勿論、核も放射線も 目には見えない。しかしながら、初心者または子供に楽しく理解してもらうため何か目に見える 巧いモデルがないかと長い間、模索してきた。偶々、寺田寅彦の科学随筆『線香花火』に出会っ て「火球」を励起状態の核と見做すならば、「火球」から出る火花を放射線と見立てることが可能 なことに気が付いた。中学生、幼稚園の父母会、大人も子供も来る科学行事、生涯学習の場など で試みたところ、いずれも好評を博したので報告する。

【方法:道具立てと実験】共同研究者の中に茶商を営む者がおり、安全性のため花火は茶箱の中 で行うことを提案し、以後もっぱらこの方法を採用している。花火は、まず、線香花火、次に、 ねずみ花火を用いた。来場者は花火を見たり、あるいは、自分でやったりした後、放射線測定の ほうに進む。放射線測定器としてはベータ線簡易測定器(愛称:ベータちゃん)を用いた。測定 試料としては、土、砂、その他岩石・鉱物などの無機物、建物の壁、床、乾燥した植物、また、 動物としては各自の身体を用いた。自然における高レベル放射性試料としてブラジルの砂、数種 を測定実験の最後に用いることにしている。その後、鉄板や試料自体を遮蔽体として遮蔽実験を 行い、安全性の基礎を理解してもらう。

【結果】この方法により放射線というものが、何か火の玉のようなところから出てくる、という ことが大人にも子供にも直観的に理解されたことは明白であった。花火を見て誰でもまず面白い と感じる。出てくる源と、出てくるもののイメージは極めて鮮明である。核(ベータ放射体)も 放射線(ベータ線=高エネルギー電子)も目には見えないが、直前に火球から出る火花を見てい るので離散的に飛び出してくることが分かり、数値的に低レベル(身体も含めて身の周りのレベ ル)と高レベル(普通の数百倍、千倍に近い)の区別も容易く理解された。

【考察】説明で、「お空の星(恒星、太陽も)は、核反応(核融合)が起こっているところだ、と いうことが20世紀になって解り、鉄までは融合で出来るが、それ以上は中性子で太り、最後に重 くなり重力で潰れて爆発し宇宙塵となって飛び散ってしまう。これが超新星爆発。昔から「客星」 として記録されており、小柴先生がニュートリノで見つけたのも超新星。飛び散った宇宙塵には ウランのような重い元素もあって、地球には元々、ウランのように重くて放射性の元素があった。 19世紀の終りにキュリー夫人がラジウムを発見し、人類は核分裂からエネルギーを取り出すこと を知った」ところに到って終る。説明は相手の年齢、関心の度合い、核アレルギーの有無、など により適当なところでやめる。ある中学生では、大学の教養課程位まで行ってしまったケースも ある。子供は柔軟で、学習意欲は無限である。何人かの主婦は「この世の中の観方が変った」と 述べた。その後、線香花火だけでなく、ねずみ花火も用いるようになり現在も工夫を重ねている。

Radiation education using fireworks ISHIKAWA, T., NIHON'YANAGI. H., OGASAWARA, H., MAKI, S., TSUSHIMA, K., OSANAI, Y., OARATANI, M. γ線摂動角相関法による酸化亜鉛中の局所場観察(II)

11B01

(¹阪大院理、²京大原子炉)

○佐藤 渉¹、斎宮芳紀¹、篠原 厚¹、大久保嘉高²

【はじめに】

酸化亜鉛(ZnO)は、ウルツ鉱型の構造をもつ典型的なn型半導体として知られている。この物性の起源に関しては、格子間の過剰亜鉛や酸素空孔に基づいて議論が展開されていたが、 近年、不純物水素がドナーとして格子間に存在していることが報告され、大いに注目を集めた[1]。この現象のように、ZnOは極微量の不純物の存在によって伝導度が変わることが知ら れており、不純物の導入による物性の制御が興味深い研究対象となっている。本研究では、 不純物としてインジウムを添加したZnOの伝導度の変化に着目し、¹¹¹Cd(←¹¹¹In)をプローブ とするγ線摂動角相関法で局所場を観察し、バルクの物性[2]との関連を調べた。

【実験】

In(NO₃)₃・3H₂Oのエタノール溶液にZnO粉末を加え、エタノールが完全に蒸発するまで撹拌 して粉末試料を得た。In濃度は 500 ppmと 5,000 ppmとなるように調整した。これら 2 種類の粉 末試料とInをドープしないZnO粉末(undoped ZnO)を別々に錠剤成形して、1,000℃で 3

時間焼成した。3 種類の焼成試料に¹¹¹Inの塩酸溶液 を滴下し、1,100℃で4時間焼成して摂動角相関測定 用の試料とした。測定には従来の4検出器法を採用 し、室温から973 Kの温度範囲において、角相関ス ペクトルの温度依存性を調べた。

【結果】

Fig. 1 に In を 5,000 ppm ドープした試料で得られ た摂動角相関スペクトルを示す。プローブ核と外場 との電気四重極相互作用を反映する典型的なスペ クトルであり、振幅に顕著な温度依存性が見られる。 これは温度変化が現れなかった undoped ZnO とは対 照的な結果である。また、500 ppm ドープした試料 については両者の混合状態を示すスペクトルが得 られた。本発表では、この振幅の温度変化が可逆的 であることを踏まえて測定結果を議論する予定で ある。

【参考文献】

[1] K. Shimomura *et al.*, Phys. Rev. Lett. **89**, 255505 (2002).
[2] R. Wang *et al.*, J. Solid State Chem. **122**, 166 (1996).

Fig. 1. TDPAC spectra of $^{111}Cd(\leftarrow^{111}In)$ in 5,000-ppm In-doped ZnO at (a) 673 K and (b) 298 K. Solid lines are preliminary fits to the data.

Local Fields of ZnO Observed by Means of the TDPAC Method SATO, W., ITSUKI, Y., SHINOHARA, A., OHKUBO, Y.

パイ中間子原子およびミュオン原子形成後の原子過程の解明

1**B**02

(阪大院理¹,高エネ研²,国際基督教大³)○二宮和彦¹,中垣麗子¹,杉 浦啓規¹,中塚敏光¹,佐藤渉¹,吉村崇¹,松村宏²,久保謙哉³,三浦太一 ²,西山樟生²,篠原厚¹

【はじめに】

負の電荷を持ったパイ中間子もしくはミュオンが原子系へと導入された、パイ中間子原子お よびミュオン原子は、その形成過程についてこれまで多くの研究が行われてきている。一方 で、これらエキゾチックアトム形成後の電子状態について注目した研究はほとんど行われて いない。電子エックス線のエネルギーは、エックス線放出時の負の電荷の粒子の存在準位と 電子状態に影響を受ける。このことから本研究グループでは、パイ中間子原子およびミュオ ン原子から放出される電子エックス線に注目し、電子エックス線のエネルギーの精密測定か らパイ中間子原子およびミュオン原子形成後の電子状態や原子過程の考察を試みてきた。

【実験】

本研究に関する一連の実験は高エネルギー加速器研究機構において行った[1]。さらに計算 実験として、パイ中間子およびミュオンのカスケード過程の計算を行い、さらに種々の原子 状態におけるパイ中間子原子およびミュオン原子の電子エックス線のエネルギーの計算を行 った。

【結果と考察】

実験で得られた電子エックス線スペクトルのフィッティングを行い、パイ中間子原子および ミュオン原子から放出される電子エックス線のエネルギーを求めた。これらの結果について 図1に示す。電子エックス線放出時の負の電荷の粒子の準位についてカスケード計算による

見積もりを行ったところ、以前に予想し たように[1]、パイ中間子およびミュオン が主量子数 6~8 程度を持つときに電子エ ックス線の放出が最も起こっていること がわかった。これらの状態にあるときの 電子エックス線エネルギーを理論計算よ り見積もり、さらに電子空孔が存在する ときの電子エックス線のエネルギーにつ いても計算した。これら計算結果を実験 結果と比較を行い、電子エックス線のエ ネルギーからパイ中間子原子およびミュ オン原子形成後の電子状態に関する考察 を行ったのでその結果を報告する。

図1: パイ中間子原子のおよびミュオン原子 から放出される電子エックス線エネルギー

【参考文献】

[1] 二宮 他 第 50 回放射化学討論会 2B01 (2006)

Investigation of atomic processes after the formation of pionic and muonic atoms.

NINOMIYA, K., NAKAGAKI, R., SUGIURA, H., NAKATSUKA, T., SATO, W., YOSHIMURA, T., MATSUMURA, H., KUBO, K., MIURA, T., NISHIYAMA, K., SHINOHARA, A.,

11**B**033

o-Ps と O₂のスピン転換反応

(東北大理) 〇二瓶英和、木野康志、関根勉

陽電子と電子の束縛状態はポジトロニウム(Ps)と呼ばれ、スピン一重項のパラポジトロニウム(p-Ps)、三重項のオルソポジトロニウム(o-Ps)の二つの状態がある。真空中における o-Ps の寿命(142 ns)は p-Ps に比べ約 1000 倍長い。物質中の o-Ps はナノサイズの欠陥や空隙に局在化し、ピックオフ反応によって 1 ns 程度まで短寿命化される。o-Ps の寿命はその環境中での元素配列等により大きく変化する。現在 o-Ps の寿命を用いた物質のナノ構造の研究や材料評価が盛んに行われている。試料中に O₂分子が存在する場合 o-Ps は著しく短寿命化することが知られている。この短寿命化は O₂分子内の電子と陽電子が対消滅するピックオフ反応に加え、O₂の不対スピンによって o-Ps が短寿命の p-Ps に変換されるスピン転換反応が起こるためと考えられるが、これらの断面積等の基本的物理量すら明らかになっていない。O₂のスピン転換断面積は寿命測定だけではピックオフ消滅断面積と分離できずこれまで測定されなかったが、o-Ps 寿命と消滅 y線エネルギーの同時測定を行い、初めてスピン転換断面積を求めた。実験では²²Na から放出される陽電子を O₂ と CO₂の混合気体中で止め o-Ps を生成した。²²Na

の β 崩壊に伴う即発 γ 線と消滅 γ 線による陽 電子寿命測定と、さらにもう一つの消滅 γ 線 のドップラー広がりも測定する寿命運動量相 関測定を行った。o-Psの消滅速度はO₂数密度 に比例し(図1)、消滅 γ 線スペクトルには、ス ピン転換反応によるドップラー広がりの狭い 成分と、ピックオフ反応による広い成分が観 測された(図 2)。これらからO₂および CO₂と の消滅断面積を求めた。

 σ_{spin} (O₂)= (1.44±0.32)×10⁻¹⁹ cm²

 $\sigma_{\text{pickoff}}(O_2) = (0.23 \pm 0.05) \times 10^{-19} \text{ cm}^2$

 σ_{pickoff} (CO₂)= 3.1×10⁻²¹ cm²

スピン転換は o-Ps が分子と衝突、散乱される 過程であり、衝突中に陽電子と電子が同じ座 標を占めねばならないピックオフ反応より断 面積が大きく、O₂による短寿命化はスピン転 換が主因であることが分かった。またパウリ 斥力が働かないためO₂とのピックオフ断面積 はCO₂よりも7倍程度大きな値になった。

Spin conversion reaction of o-Ps with O₂ NIHEI, H., KINO, Y., SEKINE, T.

ヘキサノール中におけるポジトロニウム生成の温度依存性

11B04

(東北大理、高エネ研) 〇木下翔一、木野康志、関根勉、鈴木健訓

「序】

陽電子は電子と同じ大きさの質量・電荷を持ち、反対の電荷を持つ電子の反粒子である。物質 中では、電子と衝突して対消滅するが、その前に陽電子と電子の束縛状態であるポジトロニウ ム (Ps)を形成することがある。Psの束縛エネルギーは 6.8 eV と浅いため、熱化した陽電子の Ps 生成強度は β ⁺線による放射線効果で物質中に生成した自由電子数に依存し、寿命は結晶中 の空孔の大きさに依存する。このため、PALS (Positron annihilation lifetime spectroscopy) によ り結晶状態や電子や陽電子の移動度等についての研究が行われてきた。今回、極性基をもつ分 子について固相から液相までの広い温度領域における Ps 生成機構を PALS により系統的に調べ た。

【実験】

陽電子線源(²²Na)をカプトン膜内に密封し、脱気した試料(ヘキサノール、融点 220 K)内 に封入した。クライオスタットを用いて温度を5 K/hで70~300 Kの範囲で連続的に変化させ、 各温度における陽電子寿命を測定した。また、試料に可視光を照射した場合と照射しない場合 について比較した。

【結果】

陽電子寿命スペクトルは 3 つの 寿命成分を持ち、そのうち最も 長寿命の成分($0.9 \sim 3.5$ ns)が o-Ps と考えられる。この成分の 生成強度を I_3 、寿命を τ_3 とし、 図1に測定によって得た I_3 と τ_3 の温度依存性を示す。低温固 体では、自由電子が捕捉されて 浅い束縛の準安定状態となり、 陽電子と結合して Ps をつくるこ とができるため、Ps 生成強度が 増加することが知られている。 この捕捉電子は可視光により束

図1. τ 3および Ι 3 の温度依存性

縛が解ける。低温では、可視光の有無による生成量の差は温度の上昇とともに小さくなり、150 K近傍で捕捉電子は存在できなくなった。この温度はヘキサノールのガラス転移点に一致して いる。しかし、150 K以上では可視光の有無によって *I*₃に再び差が生じている。これは極性の 無い分子には見られなかった傾向である。ガラス転移点より高温では分子の自由度が一部解放 されているので、アルコールのヒドロキシル基による水素結合が関係する新たな Ps 生成機構の 存在を示唆している。また、τ₃は温度の上昇に伴って長くなっており、高温ほど空孔サイズ が増加し、可視光の有無によって結晶構造には変化が無いことがわかる。

Temperature Dependence of the Positronium Formation in Hexanol KINOSHITA, S., KINO, Y., SEKINE, T., SUZUKI, T.

1805 固体における高エネルギーイオンのホットアトム化学的過程に関する研 究(XII)-タングステンカーバイドに照射された重水素の化学的挙動に及 ぼす照射温度依存性-(静岡大理放射研) ○鈴木祥子、菊池洋平、吉河朗、大矢恭久、奥野健二

【緒言】次世代のエネルギー源のひとつとして、D-T 核融合発電が検討されている。核融合 炉内におけるプラズマ対向機器であるダイバータにはプラズマ中の不純物を除去するととも に、第一壁への熱負荷を低減させる役割がある。ダイバータはプラズマに直接曝されるため、 高融点である炭素と低スパッタ率であるタングステンの併用が検討されている。これらは、 プラズマ中の高エネルギー粒子によるスパッタや熱衝撃のため、ダイバータ表面でタングス テンカーバイド(WC)を含む再堆積層を形成すると考えられる。また、堆積した WC にはプラ ズマより漏洩した高エネルギートリチウムが照射されるため、その化学的挙動の解明は核融 合炉の安全性を評価する上で重要な課題である。そこで、本研究では WC に打ち込まれた高 エネルギートリチウムの捕捉・脱捕捉過程等の化学的挙動に及ぼす照射温度依存性を解明す るために、重水素を用い、各照射温度で照射された重水素の化学的挙動を昇温脱離(TDS)法お よび X 線光電子分光(XPS)法を用いて評価した。

【実験】試料としてアライドマテリアル社製の多結晶 WC を用いた。はじめに不純物を除去 するために 1323 K で 10 分間の加熱処理を行った後、重水素イオン(D₂⁺)照射をエネルギー1.0 keV、フラックス 1.0×10¹⁸ D m⁻² s⁻¹、フルエンス 1.0×10²² D m⁻² にて 323 - 873 K の各照射温度 で行った。照射後、XPS 測定を行うとともに TDS 測定を昇温速度 0.5 K s⁻¹ として室温から 1323 K まで行った。

【結果・考察】図に各照射温度で D_2^+ 照射した際の D_2 TDS スペクトルを示す。Gaussian 分布 関数を用いたピーク解析の結果、400、490、590、930 K 付近に重水素の脱離ピークが存在す ることが明らかになった(図中の Peak 1- Peak 4)。これらは、これまでの研究により、Peak 1, Peak 2 は WC 格子間サイト、Peak 3 は炭素空孔、Peak 4 は C-D 結合として捕捉された重水素 に起因する脱離ピークであることが報告されている [1]。Peak 1 は照射温度が 423 K 以上では 見られず、573 K 以上では Peak 1 に加え、Peak 2、Peak 3 も見られなかった。また、XPS の結

果から、W-4fのピークでは、照射温度423 K での照射後、高エネルギー側に化学シフトが見られ、照射温度573 K での照射後、低エネルギー側への化学シフトが見られた。一方 C-1s のピークでは、加熱処理後と比較して、照射温度323 K での照射後、高エネルギー側へシフトし、照射温度473 および573 K では更なる化学シフトは見られなかった。これらのことから、Peak1は2つの C と 3 つの W からなる格子間サイト、Peak2は3 つの C と 2 つの W からなる格子間サイトからの脱離であることが示唆された。さらに、照射温度673 K 以下では C-C 結合に寄与するピーク面積が減少したのに対し、673 K 以上では増加した。よって 673 K 以上における照射では D_2^+ 照射中の加熱によって炭素が試料表面上に

偏析することが示唆された。[1]H. Kimura et. al., Fusion Eng. Des. 81, (2006) 295.

Studies on hot atom chemical behavior of energetic ions in solids (XII) -Implantation temperature dependence on chemical behavior of deuterium implanted into tungsten carbide - SUZUKI, S., KIKUCHI, Y., YOSHIKAWA, A., OYA, Y., OKUNO, K.

11806 固体における高エネルギーイオンのホットアトム化学過程に関する研究(XIII)-炭素含有ボロン膜に照射された高エネルギー重水素の化学状態に及ぼす炭素 不純物の効果 (静岡大理放射研)〇徳永竜也 吉河朗 菊池洋平 石川寛匡 須田泰市 五十嵐恵美 大矢恭久 奥野健二

【緒言】D-T 核融合炉内の第一壁において、不純物のプラズマ内への混入抑制および除去のため、壁 コンディショニングとして、第一壁にボロンを蒸着させるボロニゼーションが実施・検討されている。 壁表面に蒸着されたボロン膜には酸素や炭素等の不純物が含有され、プラズマより漏出する高エネル ギーのトリチウムが打ち込まれることが予想される。トリチウムは放射性核種であるためボロン膜に 打ち込まれたトリチウムの滞留量や捕捉状態の解明は、核融合炉の安全性評価の観点から重要な研究 課題である。これまで当研究室では、高純度ボロン膜および酸素含有ボロン膜に対し、高エネルギー 重水素イオン(D₂⁺)を照射し、膜中に捕捉された重水素の化学的挙動を解明してきた。しかし、ボロン 膜内には不純物として酸素のみでなく、炭素も含有することが予想される。そこで本研究では炭素含有 ボロン膜に D₂⁺照射し、膜中における重水素の化学状態に及ぼす炭素不純物の影響について、X線光電 子分光(XPS)法および昇温脱離(TDS)法を用いて評価した。

【実験】プラズマ化学気相蒸着(P-CVD)法により炭素濃度がそれぞれ 8-51%の炭素含有ボロン膜を調製 した。調製したボロン膜について 1200 K にて 10 分間の加熱処理を行った後、室温にてイオンエネル ギー1.0 keV D_2^+ 、イオンフラックス $1.0 \times 10^{18} \text{ D}^+ \text{ m}^2 \text{ s}^{-1}$ 、イオンフルエンス $7.3 \times 10^{21} \text{ D}^+ \text{ m}^2$ にて D_2^+ 照射を 行った。照射後、XPS 測定および、TDS 測定を昇温速度を 0.5 K s^{-1} として、室温から 1200 K まで行っ た。

【結果・考察】図に 51%の炭素を含有したボロン膜に 対して、D₂⁺照射を行った際のD₂ TDS スペクトルおよ び Gaussian 分布関数を用いたピーク解析の結果を示す。 図より D₂の TDS スペクトルは Peak 1~3の脱離ピーク から成ることがわかった。また、Peak 3 は高純度ボロ ン膜では見られない脱離ピークであることがわかった。 また、炭素濃度の増加に伴い Peak 1、Peak 2 は減少す るが、Peak3 は増加することがわかった。これらのこと から、炭素濃度の増加に伴い Peak 3 として捕捉された 重水素の滞留量は増加するため、Peak 3 は炭素に捕捉 された重水素の捕捉サイトであることが示唆された。

ここで、各炭素濃度を持つボロン膜における D₂⁺照射前 後での B-1s、C-1sXPS スペクトルのピークエネルギー

図 炭素濃度 51%の炭素含有ボロン 膜における D₂ TDS スペクトル

および半値幅から、膜中でボロンおよび炭素はいくつかの異なる化学状態で存在していることがわかった。また、これらのピークはB-1sXPS スペクトルに関してはB-B 結合およびB-C 結合、C-1sXPS スペクトルに関してはC-B 結合およびC-C 結合に帰属された。加えて TDS から得られた Peak 3 の D₂滞留量と、XPS スペクトルから得られた B-1s における B-C 結合に由来するピーク面積および C-1s における C-B 結合に由来するピーク面積にはそれぞれ滞留量が増加するにつれ、XPS スペクトルのピーク面積も増加するという相関があることから、Peak 3 は B-C-D 結合として捕捉された D₂の脱離であると考えられる。従ってボロン膜に炭素を添加することにより重水素は高温側に新たな捕捉サイトとして B-C-D 結合を形成することが示唆された。

Studies on hot atom chemical behavior of energetic in solids(XIII) - Effects of carbon impurity on chemical behavior of energetic deuterium implanted into carbon-contained boron film TOKUNAGA, T., YOSHIKAWA, A., KIKUCHI, Y., ISHIKAWA, H., SUDA, T., IGARASHI, E., OYA, Y., OKUNO, K.

118077 固体における高エネルギーイオンのホットアトム化学的過程に関する 研究(XIV)-固体トリチウム増殖材 Li₂TiO₃ 中に照射された重水素の捕 捉過程に関する研究-(静岡大理放射研) 〇稲垣祐治、須田泰市、石川寛匡、吉河朗 大矢恭久、奥野健二

[緒言] 核融合炉ブランケットシステムにおけるトリチウム増殖材は、D-T 反応により生成した中性子との⁶Li(n, a)T や⁷Li(n, n' a)T 反応により燃料であるトリチウムを増殖させる役割を持つ。このため核融合炉の安全性評価およびトリチウム回収機構の確立の観点から増殖材中へのトリチウムの捕捉過程の解明は重要である。そこで本研究では、トリチウム増殖候補材のひとつであるチタン酸リチウム(Li₂TiO₃)に対しトリチウムを模擬した重水素イオン(D₂⁺⁾を照射し、その捕捉過程を昇温脱離法(TDS)およびX線光電子分光法(XPS)を用いて明らかにした。

[実験] 試料としてフルウチ化学株式会社製 Li₂TiO₃粉末を焼結したものを用いた。1000 K に て 10 分間の加熱処理を行い不純物除去した後、 D_2^+ 照射をイオンエネルギー3.0 keV、イオン フラックス 2.0×10¹⁸ D⁺ m⁻² s⁻¹ にて行った。なお、イオンフルエンス依存性実験では室温にて イオンフルエンスを(0.1-2.0)×10²² D⁺ m⁻² と変化させ、照射温度依存性実験ではイオンフルエ ンス 1.0×10²² D⁺ m⁻² とし、照射温度を室温から 673 K まで変化させて D_2^+ 照射を行った。 D_2^+ 照射後 XPS 測定を行い、次いで TDS 測定を昇温速度 5 K min⁻¹ にて室温から 1000 K まで行っ た。

[結果・考察] 本研究で得られた重水素 TDS スペクトルに対して Gaussian 分布関数を用いて ピーク解析を行った結果、4 つのピークに分離できることが明らかとなった。熱中性子照射 を行った Li₂TiO₃のトリチウム TDS スペクトルの結果[1]との比較から、ピーク 1 (380 K)およ びピーク 2 (420 K)は試料表面近傍からの脱離、ピーク 3 (500 K)およびピーク 4 (600 K)はバル ク内からの重水素の脱離であることがわかった。特にピーク 3 およびピーク 4 はそれぞれ酸 素空孔にひとつの電子がトラップされた E'-center からの脱離、O-D 結合の分解による脱離で あると考えられた。図に各イオンフルエンスで D₂⁺照射した際の各捕捉サイトにおける重水素

滞留量を示す。イオンフルエンス 0-0.75×10²² D⁺ m⁻²の領域において、重水素は E'-center へ優先 的に捕捉され、 0.75×10^{22} D⁺ m⁻² 以上でほぼ飽 和に達することがわかった。また、E'-center へ の捕捉が飽和した 1.0×10^{22} D⁺ m⁻² 以上では、イ オンフルエンスの増加に伴って O-D 結合として 重水素が捕捉されることが明らかとなった。以 上の結果より、照射された重水素は E'-center へ 優先的に捕捉され、E'-center への捕捉が飽和に 達した後、O-D 結合を形成することが示唆され た。本発表では照射温度依存性実験の結果も踏 まえて、Li₂TiO₃の重水素捕捉過程に関して詳細 な議論を行う予定である。

図 イオンフルエンスの変化に伴う各 捕捉サイトの重水素滞留量の変化

[1] M. Oyaidzu, et al., J. Nucl. Mater. 329-333 (2004) 1313.

Studies on hot atom chemical behavior of energetic ions in solids(XIV) -Trapping processes of deuterium implanted into solid tritium breeding material, Li₂TiO₃ - INAGAKI, Y., SUDA, T., ISHIKAWA, H., YOSHIKAWA, A., OYA, Y., OKUNO, K.

11B08

レーザー蒸着した酸化鉄薄膜の酸素圧力・生成温度による組成変化 (東理大理^{*1}・理研^{*2}) 〇高野 勝弘^{*1}・加藤 宏和^{*1}・小林 義男^{*2}・山田 康洋^{*1}

【序】レーザーアブレーションによって、蒸気圧が低い試料でもその化学組成を保持したまま容易に 気化することができる。この蒸発法を用いて薄膜を作るのがレーザー蒸着法である。我々はこれまで に α -Fe₂O₃やFe₃O₄等の酸化鉄固体をAl基板上にレーザー蒸着し、その組成や構造を調べてきた。そ の結果、結晶成長過程で酸素脱離が起き、蒸発源とは異なった化学組成を持つ酸化鉄薄膜が生成する ことがわかった。また、酸素雰囲気下で純鉄をレーザー蒸発させて基板上に蒸着させると、気相での 酸化反応によりFe₃O₄、 γ -Fe₂O₃、Fe³⁺微粒子などの酸化鉄が得られ、未反応の α -Fe が薄膜に含まれ ることを明らかにした。本研究では、任意の組成を持った酸化鉄薄膜を作り分けることを目的として、 酸素雰囲気下での酸化鉄のレーザー蒸着を行い、酸化鉄薄膜の生成機構に関する知見を得た。

【実験】自作の圧力制御装置により、真空容器内が 5~670Pa の任意の酸素圧力になるようにしなが ら、YAG レーザー(New Wave, TEMPEST 10,532 nm,84 mJ/pulse, 10 Hz)を用いて、ヘマタイト固体を レーザー蒸発した。これをレーザー照射試料から4 mm 離れた位置に保持した Al 基板上に蒸着させ た。金属鉄のレーザー蒸着も同様に行った。得られた薄膜を室温で⁵⁷Co/Rh を線源としてメスバウア ースペクトルを測定し、表面形状を走査型電子顕微鏡 SEM により観察した。

【結果および考察】レーザー照射試料固体を Fe_2O_3 として酸素圧力 0~200Pa の雰囲気中で得られた酸 化鉄薄膜のメスバウアースペクトルを Fig.1 に示す。真空中で Fe_2O_3 をレーザー蒸着した場合(Fig.1a) には、純粋な Fe_2O_3 薄膜は得られず常に2価鉄を含んだ薄膜が得られたのに対し、酸素雰囲気下でレ ーザー蒸着することにより Fe_2O_3 薄膜の生成が可能となった。酸素圧力が 7Pa の場合(Fig.1b)には、ほ ぼ純粋な Fe_2O_3 薄膜が生成したが、酸素圧力が高くなるにつれて Fe_3O_4 と酸化鉄微粒子によるダブレ

ット成分が増大した。Fe₂O₃ をレーザー蒸発すると Fe:O = 2:3 の組成比を持った蒸気が生成するため、 十分なエネルギーを保持した酸化鉄微粒子が基板 上に到達し酸化鉄結晶が生成するが、酸素脱離を補 うためには適量の酸素を導入する必要があると考 えられる。しかし、酸素圧力を高くしすぎると酸化 反応と同時に微粒子が冷却されるために基板上で の結晶成長に必要なエネルギーが十分でなくなっ たと考えられる。

一方、 α -Fe をレーザー蒸発試料として酸素圧力 を変化させて同様の測定を行うと、酸素圧力によら ず α -Fe の生成量が約 60%で一定となった。この 場合、気相中の酸化反応で Fe₂O₃を生成するには酸 素が十分ではなく、薄膜には未反応の α -Fe が残っ た。気相反応を促進するために酸素圧力を大きくし ても酸化鉄微粒子のみが増大し、Fe₂O₃ 結晶の膜を 生成することは出来なかった。

Fig.1 Mössbauer spectra of the filims produced by laser deposition of Fe_2O_3 in O_2 atmosphere. (a) In vacuum, and the O_2 pressures are (b)7Pa (c)45Pa (d)120Pa, and (e)200Pa..

Composition change of oxide thin films produced by laser deposition depending on oxygen pressure and generation temperature

KOUNO, Katsuhiro., KATOU, Hirokazu., KOBAYASHI, Yoshio., YAMADA, Yasuhiro.

11809 アークプラズマガン蒸着した鉄薄膜の基板表面形状による スピン配向制御

(東理大¹・理研²) ○加藤宏和¹・高野勝弘¹・小林義男²・山田康洋¹

【序】鉄薄膜の磁気配勾は製膜方法によって制御可能であり、抵抗加熱法による製膜では垂 直磁気配勾し、レーザー蒸着法による製膜では面内磁気配向することを報告してきた。これ らの結果は鉄原子の内部エネルギーや蒸気密度の差によるものと考えられる。本研究では、 これら蒸着法の中間の性質をもつアークプラズマガン(APG)を用いた製膜を行い、生成し た鉄薄膜の磁気配向をメスバウアー分光法により測定した。その結果、アルミ基板の表面に 溝(幅 100 nm、深さ 10 nm)がある場合には、この溝に沿って面内に一次元に磁気配向するこ とが明らかになった。

【実験】真空排気(10⁴ Pa)した容器中に保持したアルミ基板(40μm 厚)上に、鉄を蒸発源と した APG(ULVAC 製, APG-1000)により鉄薄膜を生成した。1パルスあたりの蒸発量は1.1×10⁻⁶ mol / pulse で蒸着量は 4.0×10⁻⁹ mol / pulse と見積もられる。これを1 Hz で 12500 pulse 導入し鉄薄膜を得た。この鉄薄膜をメスバウアー分光法・SEM・AFM により観測した。

【結果及び考察】SEM と AFM の観察から、アルミ基板表面には圧延時にできたナノスケー ルの溝(深さ約10 nm、巾約100 nm)が確認された。この基板上に APG を用いて鉄薄膜(膜 厚 814 nm)を生成したところ、その表面にはアルミ基板と同様な凹凸が見られた。この鉄薄 膜のメスバウアースペクトルを Fig.1の様に様々な角度で測定した。まず Fig.1(a)のように測 定した場合、メスバウアースペクトルには一組のα-Fe によるセクステットが観察され、そ の強度比(表1)からほぼ面内に磁気配向していることが分かった。さらに、Fig.1(b)・(c) のようにγ線と溝の角度がそれぞれ 45°、90°となるようにして測定したところ、セクステッ トの強度比(表1)に明らかな差が見られ、溝に沿って1次元に磁気配向していることが明

らかとなった。強度比の実測値と完全な一次元 磁気配向を仮定した強度比の理論値を比較する と、完全には一致せず、磁気配向にある程度の 乱れがあることが分かった。磁気配向の角度が 面外方向と面内方向にそれぞれ正規分布してい ると仮定して3つの測定値を全て満足するよう に角度分布を見積もると、面外方向には標準偏 差18°、面内方向については標準偏差31°の 分布を持っていることが分かった。一方、ア ルミ基板表面を化学研磨によって溝をなくし た基板を用いて同様の実験を行ったところ上 記のような磁気配向はみられず、面内に磁気 配向するのみであった。

Fig. 1. Geometries used in Mössbauer measurements

表1 メスバウアースペクトルの強度比

	実測値	γ線-溝	角度	理論値
(a)	3:3.2:1:1:3.2:3	90°		3:4:1:1:4:3
(b)	3:1.7:1:1:1.7:3	45°	3	:1.33:1:1:1.33:3
(c)	3:3.0:1:1:3.0:3	90°		3:4:1:1:4:3

Control for spin orientation according to substrate surface shape of iron thin films produced by arcplasma-gun

KATO, H., KONO, K., KOBAYASHI, Y., YAMADA,

11**B**110

Magnetic and nano-structure analysis of SnO2 doped with Sb and Fe

K. Nomura¹, C. Barrero^{1,2}, K. Kuwano³, Y. Yamada³, J. Sakuma⁴,

M. Takahashi⁴, T. Saito⁴, E. Kuzman⁵ and A. Ooki¹

⁽¹Univ. Tokyo, ²Antioquia Univ., ³Tokyo Univ. Sci., ⁴Toho Univ., ⁵Etoves Lorand Univ.)

We have studied the effect of the simultaneous Fe and Sb doping on the magnetic and crystallographic properties in SnO₂ nanocrystals. The samples, which were prepared by a sol-gel method, consisted of rutile type SnO₂ and were free of any impurity phase. ¹¹⁹Sn-, ⁵⁷Fe-, and ¹²¹Sb-Mössbauer spectroscopies demonstrate that Sn⁴⁺, Fe³⁺ and Sb⁵⁺ are the only oxidation states for these ions in the SnO₂ structure. For most samples, the presence of antimony did not improve M_s , but for Sn_{0.85}Sb_{0.05}Fe_{0.1}O₂₋₈, this value was increased up to 14 times as shown fig.1. This only sample exhibited magnetic sextets in its ⁵⁷Fe Mössbauer spectrum in addition to two doublets, whereas for the other samples only two doublets were observed as shown fig.2. For a restricted Sb/Fe ratio, the magnetic ordering of the iron ions can be activated. The origin of the magnetic interactions is considered due to the existence of exchange interactions between the iron ions mediated by free-carriers in an impurity band. The doping Sb⁵⁺ into SnO₂ increase the free carriers, and the excess doping of Fe³⁺ induce the oxygen vacancy.

$$\label{eq:static} \begin{split} & \text{Fig.1 Magnetization curves for samples: a)} \\ & \text{Sn}_{0.85}\text{Sb}_{0.05}\text{Fe}_{0.1}\text{O}_{2\text{-}\delta}, \ b) \ \ & \text{Sn}_{0.8}\text{Sb}_{0.1}\text{Fe}_{0.1}\text{O}_{2\text{-}\delta}, \ c) \\ & \text{Sn}_{0.9}\text{Fe}_{0.1}\text{O}_{2\text{-}\delta}, \ d) \ \ & \text{Sn}_{0.85}\text{Sb}_{0.1}\text{Fe}_{0.05}\text{O}_{2\text{-}\delta}. \end{split}$$

Fig.2 ⁵⁷Fe Mössbauer spectra of $Sn_{0.9-x}Sb_xFe_{0.1}O_{2-\delta}$ with x=0.1, 0.05, and 0.0.

11B111

金属並みに電気を通すバナジン酸塩ガラスの 電気伝導度とメスバウアースペクトル

(近畿大院産技術^{*1}、近畿大産業理工^{*2})
 ○安光寛記^{*1}、松井亮太^{*1}、栗本広志^{*1}、西田哲明^{*1,2}

[序論]

当研究室で開発されたバナジン酸塩ガラス(登録商標 NTA ガラス)は、ナノレベルの超精密加 工や放電針、発熱体などへの応用が期待され、一部実用化が始まっている。NTA ガラスは、熱処 理(再加熱)するとガラス骨格を構築する鉄およびバナジウムの四面体の歪みが小さくなる(構 造緩和する)ことがメスバウアースペクトルによって明らかになっており、構造緩和により電気 伝導度(σ)が数桁上昇する。本実験では、適度な熱処理によってσの値を段階的に変化させた NTA ガラスを作成して、構造緩和と活性化エネルギーの相関を明らかにする目的で実験を行った。 [実験]

BaCO₃、V₂O₅、Fe₂O₃の必要量を秤り取り、めのう乳 鉢を用いてよく粉砕し、混合した後、これを白金るつぼ に入れて 1000 ℃で 90 分間溶融した。溶融物をステンレ ス板(室温)の上に流し出すことにより、ガラス試料を 調製した。粉末試料を用いて示差熱分析 (DTA)を行い、 その結果を基にして熱処理温度を決定した。熱処理した 一連の NTA ガラスのメスバウアースペクトルは室温で 定加速度法により測定し、異性体シフトの基準物質とし て金属鉄も用いた。室温から 100 ℃の範囲で σ を測定す ることにより活性化エネルギーの値を求めた。 [結果と考察]

NTA ガラスを 350、370、400 および 500 ℃で熱処理 した後、 σ を測定した。熱処理前の σ は 2.8×10⁻⁶ S cm⁻¹ であったが、例えば、500 ℃で 60 min の熱処理後は 4.3 ×10⁻² S cm⁻¹となった。Fig. 1 にこれらの NTA ガラスの メスバウアースペクトルを示す。Fig. 1 から、 σ が高く なると四極分裂(Δ) が小さくなることが分る。Fig. 2 には熱処理により σ を段階的に上昇させた NTA ガラス の σ と活性化エネルギーの関係を示す。活性化エネルギ ーの値が小さくなると σ が直線的に高くなることが分る。

NTA ガラスを熱処理するとバナジウム及び鉄から成る 四面体の歪みが小さくなり、このとき電気伝導度の活性 化エネルギーが減少するため、電子ホッピングの確率が 上昇すると結論される。

Electric Conductivity and Mössbauer Spectra of Vanadate Glass.

YASUMITSU, H., MATSUI, R., KURIMOTO, H., NISHIDA, T.

10-5 10-5 10-6 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 活性化エネルギー (eV) Fig. 2. 熱処理した NTA ガラスの電

気伝導度と活性化エネルギー

1個12 有機・無機ハイブリッド化合物を用いたマルチフェロイック特 性の発現

(広大院理、広大 N-BARD、広大院先端) ○速水真也、浦上大輔、 中島 覚、鈴木孝至、井上克也

<序論>

最近、複合機能という観点から、強誘電かつ強磁性(複合フェロ)を示す"マルチフェロイ ック物質"をキーワードとした研究が有機・無機・金属錯体にわたる分野で活発化している。 マルチフェロイック物質は、強誘電性、強磁性、強弾性の中から2つ以上の性質をあわせ持 つ物質はマルチフェロイック物質と呼ばれている。このような物質では、磁場によって電気 分極をあるいは電場によって磁性をコントロールすることができ、巨大電気磁気効果を示す 可能性がある。したがって従来の単体の場合よりもずっと低エネルギーで駆動可能な新たな アクチュエータ・センサ材料創製のアプローチとして注目されている。そこでマルチフェロイ ック物質の開発にあたり[R-amine]₂FeCl₄ を合成し、その構造、磁気的性質および誘電特性に ついて調べることにした。

<実験>

FeCl₂·4H₂O とアミン誘導体の塩酸塩をモル比1:2 で約 50℃の水中で混合、攪拌し、冷却することによって無色の単結晶を容易に得ることができた。これらの構造解析、磁気測定および誘電測定を行った。

<結果と考察>

二次元構造でペロブスカイト型骨格を有する [R-amine]₂FeCl₄を合成した。ここで R はプロピル とブチルのアルキル鎖のものをそれぞれ [C3A]₂FeCl₄、[C4A]₂FeCl₄とした。単結晶構造解析 の結果より C3A が FeCl₄の二次元シート間に位置 し一つの鉄(II)イオンは六つの塩素イオンが配位 しており軸位の塩素にアンモニウムイオンが水素

図1 [C3A][FeCl4]の単結晶構造解析による構造。

結合している構造であった。またこれらの化合物の磁化率測定の結果寄り、両者ともに 90 K 付近で弱強磁性体となった。さらにこれらの化合物の誘電測定を行った結果、室温で比誘電 率の著しい増大が観測され、強誘電性を示した。これらの結果は、室温以下で強誘電体へと 転移すること、および 90 K 以下で弱強磁性体へと転移することが分かった。すなわち 90 K 以下で強誘電・強磁性を示すマルチフェロイック特性を発現させる可能性を示唆しており、 今後 ME 効果などを調べていく必要がある。

Multiferroic property for organic-inorganic hybrid compounds HAYAMI, S., URAKAMI, D., NAKASHIMA, S., SUZUKI, T., INOUE, K.

1B13 1, 3-ビス (4-ピリジル) プロパンで架橋した集積型鉄錯体のメスバウア 一分光法による研究 (広島大 N-BARD¹、広島大院理²) 〇中島 覚¹,厚地正樹²,井上克也²

【はじめに】1, 3-ビス(4-ピリジル)プロパン(bpp)で架橋した集積型錯体 Fe(NCX)₂(bpp)₂ (X=S, Se, BH₃)は珍しい集積構造を示す。即ち, Fe(NCS)₂(bpp)₂ は6配位の中心金属としては珍しい 二次元相互貫入構造をとる¹⁾。この錯体は高スピン種のままであるが,粉末 X 線回折により 類似の構造と考えられる Fe(NCBH₃)₂(bpp)₂ (1)ではスピンクロスオーバー (SCO) 現象が観測 される¹⁾。本研究では,合成方法についてさらに検討し,Fe(NCX)₂(bpp)₂の構造と SCO 挙動 について検討した。

【結果と考察】メタノールとベンゼンを溶媒として合成した錯体はベンゼンを包接しており、 Fe(NCBH₃)₂(bpp)₂・2(benzene) (2)と考えられた。2のメスバウアースペクトルを図1に示す。 室温で IS 値は 1.08mm/s であり二価高スピンを示す。QS 値(1.24mm/s) は1の0.44 mm/s よ り大きい。78K で二組の高スピン種が観測され、異なる鉄サイトの存在が示唆される。さら にわずかに低スピン種も観測される。この錯体を空気中に放置しておくと内側のダブレット が消え,低スピン種となることがメスバウアースペクトルから分かった。そこで 2を 120℃ で放置することによりベンゼンを脱離させた。得られた Fe(NCBH₃)₂(bpp)₂ (3)のメスバウアー スペクトルを図2に示す。室温のスペクトルは複雑であるが、シャープな成分のパラメータ は1に近い。78K では大部分が低スピンになり、SCO 挙動を示す。これは1の変化に類似し ているが、室温でブロードな成分が見られる点が異なる。3の粉末 X 線回折は1に類似して いたが、回折はブロードであった。3をベンゼンに浸すとまたベンゼンを包接することも確 認され、ベンゼンの包接により SCO を制御できた。これらのスピン変化は磁化率測定の結果 からも支持された。

Fig. 1 Mössbauer spectra of 2.

Fig. 2 Mössbauer spectra of **3**.

1) M. Atsuchi et al., Chem. Lett., 2007, 36, 1064.

Mössbauer spectroscopic study of the assembled iron complexes bridged by 1,3-bis(4-pyridyl)propane NAKASHIMA, S., ATSUCHI, M., INOUE, K.

研究発表要旨 9月24日(月)

1P01 ~1P34 : ポスター P 会場

1P01

(金沢大院自然) 〇鈴木大介、新井理太、横山明彦

【序論】

固体飛跡検出器はプラスチックや雲母等の絶縁性固体を材質とし、粒子が検出器中を通過すると、 その飛跡に沿ってトラックを生成する。核反応生成物の測定に固体飛跡検出器を用いれば半減期の 短い核種や、安定核種も検出することが可能である。また、検出器が小型で電源不要であることも 利点として挙げられる。本研究では、固体飛跡検出器を用いた粒子弁別のため、¹²C イオンについ て、エネルギーとエッチピット形状の相関データの取得を試みた。固体飛跡検出器としてエネルギ 一分解能のよい CR-39 を用いて、これまでデータの少なかった 66 MeV から 250 MeV のエネルギ 一領域で¹²C イオンの照射実験を行った。エッチピットの観察には光学顕微鏡では困難なエッチピ ットの深さ情報が得られる原子間力顕微鏡 (AFM: Atomic Force Microscope)を用い、照射後の試料 をエッチングして生成したエッチピットの深さと開口部の面積について、入射したビームエネルギ ーとの相関関係について検討した。

【実験】

若狭湾エネルギー研究センターに設置されている多目的シンクロトロン・タンデム加速器システム (W-MAST: Wakasawan Energy Research Center Multipurpose Accelerator System with Syncrotron and Tandm)において 250 MeV の ¹²C⁶⁺ビーム照射実験を行った。2 cm 角に切った CR-39 固体飛跡検出器 を照射試料とし、その前面にディグレーダとしてそれぞれ 1.0 mm (66 MeV)、0.8 mm (103 MeV)、0.6 mm (140 MeV)、0.4 mm (177 MeV)の厚みの Al 板を置き、それぞれ括弧に示したビームエネルギー に調整した試料と Al 板無しの試料(250 MeV)を用意し、計5 種類のビームエネルギーによるトラッ クを生成させた。照射後の試料を 6 M NaOH 水溶液で 70 ℃、15 分間エッチングし AFM 観察用試 料とした。

【結果・考察】

66 MeV, 103 MeV, 177 MeV, 250 MeV 0 4 種類のエネルギーでの¹²C ビーム照射によっ て生成したエッチピットについて AFM で観 察を行い、深さ、面積とエネルギーとの相関 関係について検討した。各エネルギーでのエ ッチピットの深さ、面積の分布のグラフをそ れぞれ図 1、図 2 に示す。横軸は深さ(面積) を、縦軸は全エッチピット数を1としたとき の、その深さ(面積)でのエッチピットの比率 である。ガウス分布を想定したフィッティン グによる曲線として掲載した。まず、エッチ ピットの深さに関して言えばビームエネル ギーが高くなるにつれて、深くなっている。 そして、面積についてはエネルギーが高くな るにつれて、小さくなる傾向を読み取ること ができる。ただし、データのばらつきが大き いためエッチングの最適条件などについて も検討していく必要がある。

Observation of Etch Pit Shape in CR-39 with Atomic Force Microscope for the Samples Irradiated with 250 MeV C-12 ions

SUZUKI, D., ARAI, M., YOKOYAMA, A.

1P02 超アクチニド元素溶液化学のための極微量濃度における 逆相クロマトグラフィーの研究

(金沢大院自然¹、金沢大理²、高エネ研³、理研⁴) ○南里朋洋¹、 荒木幹生²、鈴木大介¹、木下哲一³、菊永英寿⁴、羽場宏光⁴、横山明彦¹

【はじめに】超アクチニド元素 Rf の溶媒抽出能を調べるために、その同族体である Zr、Hf の逆相クロマトグラフ樹脂への吸着挙動を調べた。Rf を用いる実験では、核反応で製造した Rf をエアロゾルに吸着させ実験室まで輸送し化学操作を行う、オンライン実験が必要不可欠 である。本研究では、リン酸トリブチル(TBP)を保持した逆相クロマトグラフ用固定相 (TBP-Resin)を調製し、その樹脂の抽出能を測定するため、⁸⁸Zr,¹⁷⁵Hf トレーサーを用いたバッ チ実験により Zr, Hf の分配係数 K_dを決定した。また、Rf を用いたオンライン実験に適用でき るようにするため、加速器で生成した⁸⁵Zr および¹⁶⁹Hf をマイクロカラムへ輸送するオンライ ン実験を行い、迅速化学分離により Zr, Hf の溶離曲線を得た。これらの曲線から K_d 値を求め バッチ実験の結果と比較をした。これらは、Rf を用いた実験と比較できるデータとなる。

【実験】バッチ実験に使用したトレーサーは、大阪大学核物理研究センターAVF サイクロト ロンにて、それぞれ⁸⁹Y(p, 2n)⁸⁸Zr 反応、¹⁷⁵Lu(p, n)¹⁷⁵Hf 反応により製造したシングルトレーサ ーと理化学研究所で製造したマルチトレーサーを用いた。TBP-Resin は、スチレンジビニルベ ンゼン共重合体を(粒径 30 µm)を保持担体として以下の手順で調製した。保持担体を 110℃で 6 時間真空乾燥後秤量し、メタノール中で攪拌しながら樹脂に保持させたい量の TBP を滴下 した。一晩攪拌後、さらに攪拌しながら赤外ランプで温め、十分にメタノールを蒸発させた 後、110℃で 6 時間乾燥して TBP-Resin を調整した。調整した TBP-Resin の抽出能を調べるた めに以下の手順でバッチ実験を行った。TBP-Resin を遠沈管にはかり取り、全量が 3 mL にな るようにトレーサー溶液と各濃度の塩酸を加えた。攪拌後、遠心分離し溶液を 1 mL を測定容 器に分取し、 γ 線測定を行い分配係数 K_d を求めた。オンライン実験は、理化学研究所 AVF サ イクロトロンにて実施した。ターゲットは Be 箔上に Gd の電着を行い、その上に Ge を蒸着 させ作成した。^{nat}Ge(¹⁸O, xn)⁸⁵Zr 反応、^{nat}Gd(¹⁸O, xn)¹⁶⁹Hf 反応で製造した生成物の⁸⁵Zr、¹⁶⁹Hf を KCl エアロゾルに吸着させガスジェットで輸送し、溶液化を行い TBP-Resin を詰めたマイ クロカラム(1.6 mm i.d.×7.0 mm)に通し、各塩酸濃度での溶離液のフラクションを捕集した。 γ 線測定によって溶離曲線を得た。これより保持

体積を求めて Kd 値を導いた。

【結果と考察】バッチ実験とオンラインでのマ イクロカラム実験で得た Zr、Hf の K_d 値を Fig.1 に示す。測定した塩酸濃度 5-10 M で Zr の K_d 値は Hf の K_d 値よりも大きくなった。また、マ クロ量の K_d 値と比べ、今回測定した K_d 値の絶 対値はマクロ量の値より大きくなっているが、 K_d 値の変化の傾向は一致している。バッチ実 験で得た値とオンラインのマイクロカラム実 験で得た値は、良く一致しており、Rf を用い た実験に適用でき、Zr、Hf と Rf の吸着挙動を 比較することができると考えられる。

of Zr and Hf on 18.5-wt.% TBP-Resin as a function of HCl concentration.

Study on the reversed phase chromatography in trace concentration for solution chemistry of transactinide elements

NANRI, T., ARAKI, M., SUZUKI, D., KINOSHITA, N., KIKUNAGA, H., HABA, H., YOKOYAMA, A.

核分裂片の原子番号測定のための飛行時間・エネルギー検出器の開発

(新潟大理¹、新潟大機器分析センター²、理化学研究所仁科加速器研究センター³) 〇川崎拓馬¹、後藤真一²、工藤久昭¹、加治大哉³、森本幸司³、大西哲哉³

[はじめに]

アクチノイドの低エネルギー核分裂において、核分裂片の質量分割が対称な分裂と非対称な 分裂が確認されている.このうち非対称核分裂について、これまで研究から核分裂片の殻効 果が分裂機構に影響を与えていると考えられている¹⁾.さらに詳細に殻効果の影響を実験的 に確認するには、これまでに測定されている核分裂片の質量数(*A*)と運動エネルギー(*E*)に加え て原子番号を同時に測定することが有効である.荷電粒子の阻止能(*dE/dx*)は質量数、運動エ ネルギーおよび原子番号に依存する.飛行時間(TOF)と電離箱によるエネルギー測定から質量 数を求めることができるので、電離箱での阻止能を測定できれば、原子番号を決定できる. ただし、原子番号を分解能よく測定するためには、検出のための膜などによるエネルギーロ スを極力さけなくてはならない.そこで本研究では、阻止稲生の測定可能なマルチアノード

電離箱と膜をしよ うしない、大面積 タイミング検出器 の開発を目的とし ている.

Fig.1 Experiment

[実験]

ストップ検出器として用いられる大面積タイミング検出器としては、平行平板なだれ検出器 (PPAC)がよく用いられているが、気体を導入するため膜が使用される.そこで、今回はグリ ッド電離箱の入口付近にワイヤーを平行に使用した検出器を導入した.核分裂片が検出器を 通過すると、電極の間隙および真空切りの膜で電子が生成し、その電子をガス増幅により検 出する.

[結果と考察]

ストップ検出器のワイヤー面の距離 1.6 mm、圧力 100 torr の条件で、得られた波高は小さかったが、核分裂片が通過したとき生じる電子なだれのパルスを観測することができた.公園では、さらに改良を加えたタイミング検出器の性能について議論する.

[参考文献] 1) S. Goto, Studies on the Mass Splitting Process in Low-Energy Fission of Actinides

Development of timing and kinetic energy detector for measuring atomic number of fission fragments

Kawasaki, T., Goto, S., Kudo, H., Kaji, D., Morimoto, K., Ohnishi, T.

1P04 ^{90m}Nb の半減期精密測定に向けたガスジェット搬送装置の開発と 性能評価

(理研仁科セ,原子力機構,サイエンスサービス) 〇菊永英寿,笠松良 崇,羽場宏光,加治大哉,森本幸司,坂本一郎

【はじめに】Nb-90mの大部分は約2.3 keVのM2遷移を経由して壊変する。この遷移は内殻 電子の放出がエネルギー的に禁止され、また内部転換係数も大きいため、^{90m}Nbは化学形によ り半減期が変化することが期待される。Nb-90mは現在報告されている中でも最も化学状態の 影響を受けて壊変定数が大きく変化する核種の1つであり、数%の壊変定数の変化も報告さ れている[1,2]。しかし、約19秒という半減期の短さのため精度の良い半減期測定は困難であ り、その変化量は実験手法により大きくばらついている[1-5]。そこで本研究では短寿命核種 ^{90m}Nbの半減期を精密に決定するため、ガスジェット運搬装置を利用した半減期測定を試みた ので報告する。

【実験】実験装置の概要を図に示す。Nb-90m は厚さ3 µm の Al 箔に蒸着又は電着した^{nat}Zr ターゲットに約 14 MeV のプロトンビームを照射することで起こる⁹⁰Zr(p,n)^{90m}Nb 反応で製造 した。製造された^{90m}Nb をガスジェット運搬装置によって化学実験室に輸送し,エアロゾル 溶液化装置に1分間捕集した。捕集された^{90m}Nb を 20 M HF 溶液で溶解し, y線スペクトロ メトリーを行った。測定は¹³⁷Cs を参照線源として同時に測定し, pile-up 等の補正を行った。 【結果】得られた y線スペクトル中には^{90m}Nbと¹³⁷Csの光電ピーク以外は消滅放射線が確認 できる程度であり^{90m}Nbの半減期測定の妨害となるピークは無いことが確認できた。今後,繰 り返し測定することで,精度良く^{90m}Nbの半減期測定が出来ると期待できる。今回得られた半 減期等は討論会において報告する。

【参考文献】[1] J. A. Cooper *et al.*, Phys. Rev. Lett. **15**, 680 (1965); [2] A. Olin, Phys. Rev. C **1**, 1114 (1970); [3] J. S. Geiger *et al.*, Can. J. Phys. **47**, 949 (1969); [4] W. Weirauch *et al.*, Z. Phys. **209**, 289 (1968); [5] A. Meykens *et al.*, Z. Phys. **A 284**, 417 (1978)

Development of a gas-jet transport system for precision measurement of the half-life of ^{90m}Nb Kikunaga, H., Kasamatsu, Y., Haba, H., Kaji, D., Morimoto, K., Sakamoto, I.

重元素の酸化還元反応に向けた電極マイクロチップの開発

(阪大院理) 〇大江一弘、田代祐基、吉村崇、高橋成人、佐藤渉、 篠原厚

[はじめに]

102番元素ノーベリウム(No)および106番元素シーボーギウム(Sg)の酸化還元反応を行うこ とを目的とし、我々はこれまでフロー電解セルを用いた基礎実験を行ってきた。しかし、こ れまで用いてきたフロー電解セルでは、現在我々のグループで重元素化学操作用の装置とし て用いているマイクロチップとの接続が困難かつ、酸化還元効率が不十分であるといった問 題点があった。

そこで今回、新たな酸化還元反応用の装置として、マイクロチップに電極を組み込んだ電 極マイクロチップの開発を行った。

[実験]

電極マイクロチップはフォトリソグラフィーとウェットエッチング法を用いて作製した。 作製した電極マイクロチップの概念図を図1に示す。電極マイクロチップは流路が形成され ている流路基板と、電極が形成されている電極基板とからできている。流路基板の材質には ゴム状のポリマーであるポリジメチルシロキサン(PDMS)を用いた。作製した流路の幅は1 mm、長さは56 mm、深さはおよそ20 µm である。電極基板はスライドガラス上に蒸着した電 極からできており、作用電極(長さ47 mm)および対電極には金電極を用いた。この金電極はス ライドガラスとの接着性をあげるために、スライドガラス上に蒸着したクロムの上に蒸着し ている。参照電極には、PDMSに差し込んだ銀線を用いた。

作製した電極マイクロチップを用い、Noの模擬実験として酸化還元電位がよく似ているセリウム(Ce)を用いて酸化還元効率の測定を行った。¹³⁹Ceトレーサーを 0.1 M NaClO₄溶液に溶

かし、シリンジポンプを用いて電極マイク ロチップに導入した。溶液フロー下におい て定電位をかけ、電極マイクロチップから 溶出してきた溶液を硝酸溶液に溶かし、ト リブチルリン酸(TBP)を含む有機相と混ぜ て溶媒抽出を行った。これにより酸化され ていないCe³⁺と酸化されたCe⁴⁺を分離し、酸 化還元効率の見積もりを行った。発表では、 電極マイクロチップの作成方法および酸化 還元効率測定実験の結果について報告する。

Development of microchannel-microelectrode chip for redox reaction of heavy elements OOE, K., TASHIRO, Y., YOSHIMURA, T., TAKAHASHI, N., SATO, W., SHINOHARA, A.

11-1906 Fe をドープしたアモルファスIZO の磁気特性とナノ構造解析

(東大院工、埼工大、東理大、KAST)○野村貴美、鈴木陽介、 矢嶋龍彦、山田康洋、広瀬靖

【目的】室温強磁性を示す透明な酸化物はスピントロニクス材料として有望視されている。一方、ZnOにIn2O3を混合したIZOはアモルファスで、かつ透明な半導体になることが報告されている。本研究では、アモルファスIZOにFeイオンをドープして磁化率とメスバウアースペクトルの測定を行った。一部はFeのクラスターになることが確かめられた。

【実験】In: Zn=1:1の割合で、⁵⁷Feを1%、3%、 5%ドープした粉末をゾルゲル熱分解法により 作製した。これらの粉末を錠剤成型しターゲッ ト材として、真空度10²と10⁶Torrおよび基盤 温度、室温と300°Cにおいて、それぞれのレー ザーアブレーションにより IZO 薄膜を形成さ せた。得られた試料はX線回折(XRD)、振動試 料型磁力計(VSM)、転換電子メスバウアースペ クトロメトリー(CEMS)により解析した。

【結果】 XRD 測定の結果、10⁻² Torr で結晶化が 見られたが、10⁶ Torr ではブロードなピークか ら非晶質であることを確かめた。 図1のよう に、室温で製膜した後 400 ℃で 1 時間アニー ルした試料の Kerr 効果の測定では、強磁性を 示すヒステリシスが観測された。 CEMS スペ クトル(図2)から、ドープした鉄は常磁性 Fe (III)とFe(II)の2種類のダブレット(D1: δ=0.35 mm/s, $\Delta=0.85$ mm/s) (D2 : $\delta=0.77$ mm/s, Δ=2.19 mm/s)とα-Fe の磁気分裂成分(δ=0.01 mm/s, ε=0, B_{hf}=33.0T)からなることが分かった。 アニュール前は、Fe(II)とFe(III)の常磁性か らなる黒い膜であったが、アニュール後半透明 になり、Fe(II)の酸化により Fe(III)になり、 一部は還元してα-Fe が析出されることがわか った。

図 2 10⁻⁶torr, 室温で製膜した試料と その後、400°Cで1時間アニールした試料のメスバウアースペクトル。

Magnetic properties and nano-structure of amorphous IZO thin film doped with Fe NOMURA Kiyoshi; SUZUKI Yousuke; YAJIMA Tatsuhiko; YAMADA Yasuhiro; HIROSE, Yasushi.

微量⁵⁷Feをドープしたインジウム・スズ酸化物(ITO)のナノ構造解析 (東大院工¹、東邦大理²、東理大理³) 野村貴美¹,佐久間絢子²,○桑野敬介³,山田康洋³,高橋正²,大木継秋¹

【目的】近年、ZnO、TiO₂、SnO₂などに微量の Fe、Co や Mn などの遷移金属イオンをドープした 薄膜や粉末は室温で強磁性を示すことが報告され、電荷と磁性を制御する次世代のスピントロニク ス材料として注目を浴びている。ITO は液晶ディスプレイの透明電極として広く用いられている。

本研究では磁性 Fe イオンをドープした ITO の希薄磁性半導体としての挙動を調べるた めに In_2O_3 に異なる濃度の Sn^{4+} および Fe^{3+} をドープした試料粉末を作製し、磁化率とメ スバウアースペクトルの測定から磁気特性 とナノ構造を解析した。

【実験】測定に用いた試料粉末はゾル・ゲル 法を用いて作製した。金属スズ、金属インジ ウムをそれぞれ塩酸、硝酸に溶かしクエン酸 とエチレングリコールを混合し 0.01mol/1 の Sn ゾルと In ゾルを作製した。0.01mol/1 の Fe 水溶液はクエン酸水溶液に金属鉄を溶か して作製した。In ゾル、Sn ゾル、Fe 水溶液 を所定の組成比になるよう混合し、150℃ で加熱濃縮してゲル化し、空気中 250℃ で 2 時間仮焼成した。その後 500℃で 空気中 2 時間焼成した。その後 500℃で 空気中 2 時間焼成して ITO(Fe)粉末を 得た。得られた試料は粉末 X 線回折 (XRD)、振動試料型磁力計(VSM)、メ スバウアー分光による測定を行った。

【結果】XRD を測定した結果、いずれ も In_2O_3 の立方晶の結晶系を示した。 磁化率の測定では、図1の A,B,C 酸化 物各組成の飽和磁化 (Ms) は A:0.03 emu/g, B: 0.02 emu/g, C:0.00 emu/g であった。なお、インジウムに鉄のみ をドープした酸化物では強磁性的な振 る舞いは見られなかった。メスバウア ースペクトル(図2)には 2 種類の常磁 性的なピークの他、大きさ(A:15.9T B:13.1T C:10.3T)の異なる内部磁場の 成分がわずか観察された。磁化率測定に よると Sn 濃度が Fe 濃度より高い場合

Fig1 Magnetization of Fe doped ITO

Fig.2 Room Temperature Mossbauer Spectra of Fe doped ITO

に室温での強磁性的な振る舞いを示した。 In_2O_3 中に Sn^{4+} をドープすると電子のキャリア密度を高めるために、キャリア電子が Fe^{3+} のスピン間の相互作用を強めていると考えられる。

1P07 Nano structure analysis of Fe doped Indium Tin Oxide (ITO). NOMURA,K.,SAKUMA,J.,KUWANO,K.,YAMADA,Y.,TAKAHASHI,M.,OHKI,T.

11P08

パイオニック X 線測定によるパイ中間子捕獲初期過程の解明

(阪大院理¹、高エネ研²)〇中垣麗子¹、二宮和彦¹、杉浦啓規¹、中塚敏 光¹、佐藤渉¹、吉村崇¹、松村宏²、三浦太一²、篠原厚¹

【はじめに】

本研究グループではこれまでパイ中間子原子形成後の電子状態を考察するために電子 X 線エ ネルギーの精密測定をおこなってきた。電子 X 線エネルギーはパイ中間子原子の電子状態の 他に、電子エックス線放出時のパイ中間子の存在準位に影響される。この影響を見積もるた めにはパイ中間子捕獲後の原子過程を解明する必要があり、つまりパイ中間子の初期状態に ついての知見が必要である。本研究では、実験より得られたパイオニック X 線強度分布から パイ中間子捕獲の初期過程についての考察を行った。

【実験】

本実験は高エネルギー加速器研究機構の 12GeV 陽子シンクロトロン加速器研究施設(KEKPS) でこれまでの実験と同様のセットアップの元で行った[1]。ターゲットとして Z = 29~92 の単体、および化合物を用い、パイ中間子原子形成後に放出されるパイオニック X 線を三台の半導体ゲルマニウム検出器で測定した。

また、パイ中間子原子におけるカスケード過程について、ミュオン原子カスケードプログラム[2]をパイ中間子原子用に改訂したものを用いて計算した。初期の主量子数、角運動量量子数、電子の再充填の有無を計算のパラメーターとしてパイオニックX線の強度分布について計算し、実験値との比較を行った。

【結果と考察】

本実験ではターゲットにより形状が違うこと、 および化合物ターゲットにおいては対象とする 元素以外へのパイ中間子の捕獲があることから、 これらの影響を取り除くために強度の強いパイ オニック X 線を基準値(100)としてそれぞれの パイオニック X 線の相対強度を求めた。具体的 にはパイ中間子が主量子数6から5へ脱励起す る 6-5 遷移のパイオニック X 線の強度を基準値 とした。Fig1に示すように主量子数が1変化す る(△n=1)X 線遷移強度については大まかには 計算値は実験値を再現している。また、△n=2、 3の遷移時に放出されるパイオニック X 線につ いては異なる初期角運動量を仮定することで、 パイオニックX線強度比が大きく変化すること がわかった。そこでこれらの遷移のデータから 実験値のパイオニックX線強度比を再現するパ イ中間子の初期状態の検討を行った。本発表で は、化学形の違いや気体ターゲットの場合にお ける捕獲初期状態の変化について報告する。

Figure 1: The experimental relative intensities for 4-3, 5-4, 7-6 and 8-7 transitions are indicated by closed triangles, open squares, closed squares and open triangles, respectively. Also lines represent the calculated values(dashed-dotted line: 4-3, dotted line: 5-4, dashed line: 7-6, solid line: 8-7).

【参考文献】

[1] 二宮 他 第 50 回放射化学討論会 2B01(2006)

[2] V. R. Akylas et al., Comput. Phys. Commun., 15(1978)291.

Investigation of initial process in negative pion capture by measuring pionic X-ray intensities NAKAGAKI, R., NINOMIYA, K., SUGIURA, H., NAKATSUKA, T., SATO, W., YOSHIMURA, T., MATSUMURA, H., MIURA, T., SHINOHARA, A.,

¹¹¹Agを用いたPAC法による金属錯体と生体分子中の超微細場測定

(金沢大院自然¹、金沢大理²、高エネ研³、原子力機構⁴、阪大院理⁵、京大炉⁶) 〇山崎逸郎¹、伊原 清²、木下哲一³、片岡邦重¹、横山明彦¹、村上幸弘⁴、 佐藤 渉⁵、大久保嘉高⁶

【序】これまで生体分子の金属イオン活性位の機能解明を目的としたγ線摂動角相関法の適用について研究を行い、プローブ親核に¹¹¹In($T_{1/2}$ =2.80 d)や¹¹⁷Cd($T_{1/2}$ =2.49 h)、^{111m}Cd($T_{1/2}$ =48.5 min)を用いて銅タンパク質マビシアニンやその変異体、さらに金属キレート錯体の電場勾配値を測定し、マビシアニンの配位の特異性を指摘した。しかし、これらの核種は半減期が短く、統計の良いデータを取ることが難しい、短時間で試料を作成しなければならないといった問題があった。本研究では金属タンパク質に取り込ませるPAC親核種に¹¹¹Ag(\rightarrow ¹¹¹Cd, $T_{1/2}$ =7.45 d)を用いて同様の実験を行い、より統計の良いデータを得ることを目的とした。そのためにまず¹¹¹Agトレーサーの作成手法について検討し、今後行う予定である生体試料のPAC測定結果との比較に用いるために種々の 錯体化合物を作成して実際にPAC測定を試み、得られたデータについて検討した。

【実験】日本原子力研究開発機構原子力科学研究所のJRR-3 またはJRR-4 原子炉にて天然存在比の Pd箔に熱中性子照射を行った。¹¹⁰Pd(n,γ)¹¹¹Pd反応によって生じた¹¹¹Pd(*T*_{1/2}=23.4 min)を5 日間放置 して充分にβ⁻壊変させて¹¹¹Agを製造するとともに、照射の際に同時に生成する副生成物を減衰さ せた。その後京都大学原子炉実験所に運搬して照射後のPd箔から化学分離によって¹¹¹Agを取り出 し、各種化合物を調製して測定試料とした。PAC測定は、4 台のBaF₂シンチレーション検出器を用 いたシステムにて行った。

【結果】¹¹¹Agトレーサー作成については、遠心分離機を用いた沈殿分離によって測定可能な量の ¹¹¹AgをPdターゲットから化学分離することに成功した。測定した試料のうち、塩化銀のPACスペ クトルには明確な摂動パターンが見られなかった。これは塩化銀が立方対称の岩塩型結晶構造を とっておりプローブ核周辺の電場の偏りがないためだと思われる。その他摂動が観測された試料 の配位子及び配位原子とPAC測定の解析結果(EFG:電場勾配)をTable 1 に示した。比較対象とし て、¹¹¹AgとPACプローブ核が同じ^{111m}Cdを用いて求めた試料の電場勾配も同表に示した。

配位構造が類似していることを考慮し、N配位 試料とS配位試料を比較すると電場勾配値が大 きく異なり、配位原子の種類に依存しているこ とがわかる。配位原子の等しいアンモニア錯体 とo-フェナントロリン錯体は配位数が異なるに も関わらず近い値が得られた。S配位試料を ^{111m}Cdデータと比較すると近い値となっており ¹¹¹Ag核による測定は^{111m}Cdと同様に局所場を反 映している。今後、同様の実験を生体試料に適 用する予定である。

	Table 1	EFG in complexes				
Ligand		Donor atoms of	EFG			
		ligand	$/10^{22} V \cdot m^{-2}$			
ammine		N,N	2.83			
o-phenanthro	oline	N,N,N,N	2.90			
bismuthiol		S,S,S,S	1.00			
cupferron		0,0,0,0	0.74*			
DDC		S,S,S,S	0.94*			

*Data with ^{111m}Cd tracer

Measurement of hyperfine field in metal complexes and mavicyanin by PAC method using ¹¹¹Ag probe YAMAZAKI, I., IHARA, K., KINOSHITA, N., KATAOKA, K., YOKOYAMA, A., MURAKAMI, Y., SATO, W., OHKUBO, Y.

11P10

リン酸カルシウム中のミュオニウム

(ICU¹・理研²・KEK³) ○久保謙哉¹、角山智子¹、渡邊功雄²、 西山樟生³

リン酸カルシウム(Ca₃(PO₄)₂, TCP)に X 線を照射すると、中性水素原子が生成し、隣り合っ たリン酸基の中間に室温でも数ヶ月間安定に存在することが ESR 測定から結論されている [1]。この水素原子は、TCP を水溶液系から合成した際に H⁺として取込まれていたものが、X 線照射で生成した電子と結合したものと推定されている。ミュオニウムは水素原子の軽い同 位体とみなされ、µSR 測定によって求められる超微細相互作用から、その位置や動的挙動を 感度よく知ることが出来る。また ESR では測定不可能な H⁺の analog として正ミュオンを用 いることができる。H⁺や H が安定に存在するのであれば、TCP に正ミュオンを TCP に打込み µSR 測定することにより、X 線照射を経ずに TCP 中の水素の挙動を調べることができる。

我々は、KEK-MSL と RIKEN-RAL のパルスミュオン施設を利用して TCP のμSR 測定を行 ってきたが、これまでの実験では、TCP 中のミュオニウムのスピン緩和速度が大きく、 KEK-MSL や RIKEN-RAL の時間分解能では、ミュオニウムスピン回転を明瞭に観察すること ができず、縦磁場デカップリング法によって間接的にミュオニウムの生成を示してきた。今 回は Paul Scherrer Institut(PSI、スイス)の DC ミュオンビームを用いることにより、チャンネ ル幅を 0.675ns として測定を行ったので結果を報告する。

PSI では陽子加速器からの 590MeV 1.8mA の陽子ビームをグラファイトターゲットに照射 してパイオンを生成している。パイオンの崩壊生成物のミュオンビームを利用する6ポート

のうちの一つである表面ミュオンポート piE3 で、 GPS(General Purpose Surface-Muon Instrument)を使用した。ミュオニウムの標準試料としてクォーツを用い、 ミュオン偏極度の確認には金属円盤を使用した。TCP 試料は粉末を加圧成型したものを焼成して、0.3gcm⁻²15mm ϕ としたものを用いた。

横磁場 50G でのスペクトルを Fig. 1 に示す。ミュオ ニウムスピンの回転が明瞭に観測され、ミュオニウム が生成していることが直接的に確認できた。スピン緩 和速度が非常に大きく、この統計では 0.2μs 以降では 回転はほとんど見えない。ミュオニウムの感じてい る磁場の分布が広いと推測される。

Figure 1. Muonium precession signal of TCP at RT.

[1] K. Nakashima, J. Yamauchi, J. Amer. Chem. Soc., 127 (2005) 1606.

Muonium in calcium phosphate KUBO, M. K., KAKUYAMA, T., WATANABE, I., NISHIYAMA, K.

二硫化鉄の中性子インビームメスバウアースペクトルの 11P111 温度依存性

(ICU1·理研2·東理大理3·首都大東京4·阪大理5·大同工大6·原科研7 ・サンゴバン 8)〇久保謙哉 1、鶴岡洋児 1、小林義男 2、山田康洋 3、 荘司準4、佐藤渉5、高山努6、酒井陽一6、渡辺裕夫6,8、瀬川麻里子7、 松江秀明7、篠原厚5

中性子捕獲反応による化合物の物理的・化学的変化を in situ で観測するために、中性子イン ビームメスバウアー分光法の開発を行ってきた。中性子ビームは、磁気的に収束が困難であ り、捕獲反応の閾エネルギーが存在せず、ビームはもとよりビームの散乱線があたる物質全 てがバックグラウンドの原因となりうる。このため S/N のよいメスバウアースペクトルの測 定は、"ビームの近くには試料以外ものを置かない"というのが最善である。核反応直後の生 成物の観察のためには低温での測定が望まれるが、試料を囲むクライオスタットがノイズ源 となる。我々は、クライオスタット窓やコールドフィンガー、クライオスタット設置法、ビ ームコリメータ等を種々改良し、液体窒素温度での⁵⁷Fe メスバウアースペクトルを得ること ができるようになった。

鉄化合物試料としては、二硫化鉄を選んでいる。これは、二硫化鉄の鉄含有率が高いこと と、室温でも78Kでも常磁性で磁気分裂がなく、一組のダブレットのスペクトルを与えるた めに、ピーク強度が大きく限られたビームタイムでの測定に有効なためである。二硫化鉄に は pyrite と marcasite の二つの結晶形がある。Fe^{II}と S²⁻が岩塩型の結晶構造をとっている pyrite

の 78K での測定についてはすでに報告した。今 回は pyrite と少しだけ構造の異なる marcasite の 78K での測定結果を報告する。

試料の marcasite は Hannover 産の天然鉱物を粉 砕粉末化した後加圧成型し、60 mgcm⁻²×30фの円 盤とした。クライオヘッドから 1mm 厚の 4N ア ルミニウム板のコールドフィンガーをのばし、板 に32 ♦の穴を空け、穴を覆うアルミニウムフォイ ル上に試料を固定した。熱シールドとしては、ス ーパーインシュレーションを3重にして用いた。

得られた marcasite の 78K での中性子インビー ムメスバウアースペクトルを Fig. 1 に示す。室温 での結果は二組のダブレットで解析されたが、この Figure 1. A neutron in-beam Mössbauer スペクトルも主要な成分は2成分と考えられた。

spectrum of iron disulfide(marcasite) at 78K.

Temperature dependence of neutron in-beam Mössbauer spectra of iron disulfide KUBO, M. K., TSURUOKA, Y., KOBAYASHI, Y., YAMADA, Y., SHOJI, H., SATO, W., TAKAYAMA, T., SAKAI, Y., WATANABE, Y., SEGAWA, M., MATSUE, H., SHINOHARA, A.

金属鉄の水溶液中での腐食のメスバウアー分析

(大同工大) 〇小木曽了、酒井陽一、高山努

1. はじめに

鉄あるいは鉄鋼の環境中での腐食は応用工学的に重要である。これまでに大気中、水溶液 中での腐食の研究は多数行われてきている。しかし腐食過程の化学反応の詳細についてはよ くわからない点も多い。本研究では、以前報告した繊維状鉄(スチールウール)を鉄として 用い、水溶液中に浸したまま(*in-situ*で)腐食生成物の透過⁵⁷Fe-メスバウアースペクトル 測定結果を再検討した。さらに、以前の研究では着目していなかった初期段階(数時間〜数 日以内)の腐食生成物についても実験を行った。腐食生成物中の鉄の存在状態や構造を解明 することを目的とした。

2. 実験方法と結果

繊維状鉄としては市販のスチールウールを用いた。繊維状鉄をポリエチレン袋に入れ、純水、塩化ナトリウム(NaCl)水溶液、あるいは硝酸ナトリウム(NaNO₃)水溶液を注入した。 水溶液の濃度はいずれも 0.55M とした。そのまま、測定ジオメトリを変えないよう工夫しな がらメスバウアースペクトル測定を、数日間の間隔で浸漬後 2~100 日の範囲で繰り返した。 925MBq の⁵⁷Co(Rh)線源を装着したトポロジクス・システムズ社製分光器を用いて、20℃で

行った。メスバウアースペクトルは市販の解析 プログラムである MOSSWINN3.1を用いて行った。 100 日後の生成物の主成分は、純水と NaC1 水溶 液の場合マグネタイト(Fe₃0₄)であることがわか った。

一方、初期段階の生成物のメスバウアー分析 は、ヤスリで磨いた鉄板の上に水溶液を滴下し、 生成した腐食生成物をろ紙で拭き取り収集し行 った。図1に、塩化ナトリウム0.5mol/1の滴下 後、約20時間の生成物のメスバウアースペクト ル(室温測定)を示した。スペクトルのドップ ラー速度軸の基準は純鉄(α-Fe)であった。こ のスペクトルのパラメータから、この条件での初 期生成物はレピドクロサイト(γ-Fe00H)あるい はアカガネアイト(β-Fe00H)が考えられる。

図 1. NaCl 水溶液/鉄板の腐食生成物(滴下 後 20 時間)のメスバウアースペクトル (20℃)

Mossbauer analysis of corrosion products of iron in aqueous solutions OGISO,R.,SAKAI,Y.,TAKAYAMA,T.

(信州大院教育¹, 信州大教育², 信州大工³) ○永田佳奈子¹,村松久和²,田島千聖²,金隆岩³,遠藤守信³

[目 的]

カーボンナノチューブ(以後 CNT)の生成過程で金属触媒を用いている。その際, CNT に金 属が内包されることが分かっている。透過型電子顕微鏡観察より今回用いた試料中にはナノ ワイヤ(nanowire)が含まれていることが確認されている。ナノワイヤは、多層ナノチューブ中 に金属や化合物を詰め込んだものであり、鉄を主成分としたものであると推測されている。 そこで、今回はこのナノワイヤにはどのような化学状態の鉄が含まれているか、また、用い る触媒量や CNT 生成条件が、CNT に含まれるナノワイヤの量や化学状態にどのように影響 し、関係しているのかを、メスバウア分光法を用いて調べた。

[実 験]

信州大学工学部遠藤研究室で合成されたCNTを吸収体としてメスバウア測定を行った。用 いたCNTは生成条件が異なる4種類を用いた。A;tt25rrt(フェロセンの使用量:5wt%,生成 温度:800°C), B;tt28rrt(3wt%, 800°C), C;tt30rrt(10wt%, 800°C), D;tt31rrt(3wt%, 750°C) である。これらのCNTをそれぞれ直径20mmφ,高さ5mmアクリル容器に入れ,密閉する。こ れを吸収体とし、⁵⁷Coを線源として、吸収法にてメスバウアスペクトルを測定した。得られ たスペクトルを最小二乗法(「Recoil」プログラム)によりメスバウアパラメータを求めた。 [結果および考察]

tt25rrt, tt28rrt, tt30rrt においては 0 mm/s 付近に大きな吸収が見られ, singlet であると考え られる。(図 1) さらに、その周りの小さな吸収は磁気的分裂をしている 4 組の sextet である。 よって,異なる5つの状態で鉄が存在していると考えられる。それぞれのメスバウアパラメ ータより化学状態は純鉄,炭化物,酸化物であると推測された。

一方, tt31rrt は他の3つとスペクトル形状が異なっており,(図2) singlet の吸収よりも周 りの sextet の吸収の方が大きくなっている。また, sextet は 5 組あると考えられ, 同様の解析 から、純鉄、酸化物、炭化物であると推測できる。その中でも、大きな吸収を示しているの は炭化物であると考えられる。

これらの試料の中で, 生成条件のうち生成温度のみが異なる tt28rrt(3wt%, 800℃), tt31rrt(3wt%, 750℃)のメスバウアスペクトルを比較すると、単純に吸収強度のみから判断す るならば,残存している鉄の量は tt31rrt の方が多い。触媒となる鉄の源であるフェロセンの 使用量が同じであっても、合成時の温度が低い方が鉄を含む物質が CNT 内部に多く残存する と思われる。また, sextet の占める面積が大きいことから tt31rrt には tt28rrt よりも大きく成長 した結晶が含まれていると推測される。

🗵 1 Mössbauer spectrum of nanowires produced 🛛 🖾 2 Mössbauer spectrum of nanowires produced in CNTs. (at room temperature, **tt28rrt**)

in CNTs. (at room temperature, tt31rrt)

Mössbauer spectroscopy of nanowires produced in carbon nanotubes NAGATA, K., MURAMATSU, H., TAJIMA, C., KIM, Y.A., ENDO, M.

単結晶FePSe₃のメスバウア共鳴吸収強度

(信州大院教育¹, 信州大教育², Leuven大核放射線物理研³) 仲神克 β^1 , 永田佳奈 γ^1 , 〇村松久和², S.Gheysen³

【はじめに】

電磁波誘起透明化現象(EIT)とは、量子状態の重ね合わせと量子干渉によって、共鳴的に 吸収されるべき電磁波が、あたかも物質が透明になったかのように物質を透過する現象であ る。この現象を利用すれば、反転分布を必要としないレーザー発振が可能となり、さらにこ の現象がγ線で確認できれば、γ線レーザーの開発が可能になるかもしれない。本研究では EITと呼ばれる現象をγ線で検証できる系を探し出すことが目的である。その候補として期待 されるFePSe₃の単結晶の合成が出来たので、それを吸収体に用いることによって、メスバウ ア共鳴吸収と準位交差(level crossing)の手法を使って、EITの検証実験を試みた。

【実験】

Fe, P, Seの粉末を化学量論量はかりとり, メノウ乳鉢を用いてよく混合し,合成の際 の高温に耐えることの出来るバイコール ガラスにそれぞれを真空封入した。その後 電気炉で,およそ1ヶ月間,840℃で焼成 した。冷却は1日40℃づつ設定温度を下げ てゆくことによって行った。粉末X線構造 解析を行うとともに,生成物を吸収体とし てメスバウア効果の測定を行った。その際、 得られたFePSe3単結晶(箔状、9mm²)に対 して、y線を垂直に入射させることによっ て、メスバウアスペクトルを測定し、室温 から30Kまでの温度において、その吸収強 度を詳細に調べた。

【結果および考察】

室温では、非対称な四極子分裂ダブレット(Δ =1.47 mm/s)のみが観測された。 (FIG.1)この物質は、102K付近で反強磁性転移が始まり、この温度付近のメスバウアスペクトルからは、相転移している相としていない相が共存していることが観測された。四極子分裂ダブレットは温度を下げていくと反強磁性転移によって6本に分裂するはずであるが、 γ 線が結晶の主軸に平行に入射しているために、 $\Delta m = \pm 1$ の遷移のみが許容となり、4本の吸収線のみが観測されている。問題となる量子干渉が

FIG.1. Mössbauer spectra taken with a source $Rh(^{57}Co)$ and FePSe₃ single crystal absorber at room temperature(upper) and 30K(lower).

起こると思われる遷移は、FIG.1下のスペクトルにある二組のダブレットそれぞれにおける左側のピーク同士、すなわち m=-3/2↔m=-1/2と m=1/2↔m=-1/2 である。メスバウアパラメータの温度依存性および理論的考察から得られる合理的なパラメータのセットを用いたフィティングによって求められた理論曲線を実線で示してある。点で示される測定値と実線を比較すると、吸収率が3%近く減少しており、メスバウア共鳴吸収の欠損があるように思われる。

Mössbauer resonance absorption on FePSe₃ single crystal NAKAGAMI, K., NAGATA, K., MURAMATSU, H., Gheysen, S.

リチウムイオン電池新規正極材料の電気伝導度と メスバウアースペクトル

(近大院産技¹、九大院総理工²、九大先導研³)

○松井 亮太¹, 早稲田 哲也², 岡田 重人³, 山木 準一³, 西田 哲明¹

【序論】

当研究室で開発された新規正極材料 LiFeVPOx はコバルトやニッケルを含まない(レア メタルフリー)正極として期待されるが、電池電圧がやや低いことが解決すべき課題とし て残されている。そこで鉄の一部を電池電圧の高いコバルトに置換したガラスを作製し、 電池特性の向上を目的として電気伝導度測定やメスバウアースペクトルの測定を行った。 【実験】

正極材料の組成が LiFe0.5C00.5VPOx、LiFe0.25C00.75VPOx となるように試料を作製した。 前者をシリーズ1、後者をシリーズ2とする。実験ではLi₂CO₃、Co₃O₄、Fe₂O₃、V₂O₅、 P₂O₅をそれぞれのモル比になるように計算して電子天秤で全量が5 gになるように秤り 取った。それらを乳鉢で均一になるまで混合してから白金るつぼに入れた。これを予め 1100 ℃に設定しておいた電気炉に入れて 90 min 溶融し、白金るつぼの外側を氷水に浸け て急冷した。作製したガラスの DTA を測定して、熱処理温度を決定した。熱処理前と熱処 理後のそれぞれの試料で電気伝導度とメスバウアースペクトルの測定を行った。その後、 電池特性の測定を行った。

【結果と考察】

シリーズ1、シリーズ2ともに均一で光沢があるガラ スを作製することができた。これらガラスの DTA の結 果はシリーズ1の*T*g は 395 ℃、*T*c は 465 ℃ であっ た。シリーズ2では Tg は368 ℃、Tcは460 ℃であっ た。この結果より両方とも 500 °C 、200 min の熱処 理を行った。熱処理前と熱処理後の試料のメスバウア ースペクトルを Fig.1 に示す。メスバウアパラメータ では、まず異性体シフト (δ)の値より、全てのサン プル中で鉄は3価であることがわかる。また、線幅の 値よりすべてのサンプルがガラスであることがわかる。 四極分裂(1)の値がシリーズ1、シリーズ2のいずれ においても熱処理後に減少していることから、熱処理 によりガラス骨格の歪みが小さくなり、構造緩和され たと考えられる。その結果、V^{IV}から V^Vへの電子ホッピ ングが容易となり、電気伝導度が高くなった。熱処理 前と熱処理後を比較すると、シリーズ1、シリーズ2 ともに著しく電気伝導度が上昇することが確認された。

Fig.1. 熱処理前および熱処理後の正 極材料のメスバウアースペクトル

Electric Conductivity and Mössbauer Spectra of New 極材* Cathode Material for Lithium Ion Battery MATSUI, R., WASEDA, T., OKADA, S., YAMAKI, J., NISHIDA, T.

11-11-166 リチウムイオン電池新規正極材料のメスバウアースペクトル

(近畿大院産業技術¹,近畿大産業理工²,九大院総理工³,九大先導研⁴)○栗本広志¹,早稲田哲也³, 岡田重人⁴,山木準一⁴,西田哲明²

[序論] リチウムイオン二次電池の代表的な 4.0 V 系正極活性物質として LiCoO₂, LiNiO₂, LiMn₂O₄ が存在する。ホスホオリビン型 LiFePO₄正極は,理論容量が 170 mAh/g と高く, 3.4 V vs. Li⁺/Li の作動 電圧, さらには高価な,あるいは環境中に有毒な遷移金属を使用しない点から注目されている。

ー般的な酸化物ガラスについて、ガラス転移温度 (T_g) と Fe^{III}の四極分裂 (Δ) の間には直線関係が 成立することが知られている (T_g — Δ 則)。 T_g — Δ 則では、直線の傾きが 680 °C/mm s⁻¹の場合, Fe^{III} が 四面体の NWF (network former) として存在し、直線の傾きが 260 °C/mm s⁻¹の場合においては、Fe^{III} が八面体の NWF として存在する。また、Fe^{III} が NWM (network modifier) として存在するときには、 直線の傾きは 35 °C/mm s⁻¹ となる。

[実験] Li₂CO₃ (あるいは Na₂CO₃), FeO, V₂O₅, P₂O₅ を化学量論的に混合させ,さらに 5 wt.%の活性炭素を添 加し,1100 °C で 45~50 min,窒素ガス中で試料を溶融 した後,融液を冷却した銅板で挟み込み急冷ガラス化さ せて, xLi₂O-2FeO-V₂O₅-P₂O₅, xNa₂O-2FeO-V₂O₅-P₂O₅ (x=0,0.5,1,1.5) ガラスを合成した。試料は 370 MBq の ⁵⁷Co(Pd)を線源とするメスバウアースペクトルの測 定により鉄の酸化状態と配位状態の解析を行った。DTA では,基準物質として α -Al₂O₃粉末を使用し,昇温速度 10 °C/min で測定した。

[結果と考察] Fig. 1 に xLi₂O-2FeO-V₂O₅-P₂O₅ (x=0, 0.5, 1, 1.5) ガラスのメスバウアースペクトルを示す。 xLi₂O-2FeO-V₂O₅-P₂O₅ ガラスにおいて, アルカリ金属の 増加に伴い Fe^{II}の面積強度の減少が見られるが, これは NWM として存在する Li⁺により NBO (nonbridging oxygen) が増加し, Fe^{II} と結合するためではないかと考 えられる。また, xLi₂O-2FeO-V₂O₅-P₂O₅ (x=0, 0.5, 1, 1.5) ガラスの $T_g \ge \Delta$ の直線関係に関しては, 直線の傾きが a=464, xNa₂O-2FeO-V₂O₅-P₂O₅ (x=0, 0.5, 1, 1.5) ガラ スにおいては, a=365 となった。電池特性およびガラス の構造に関しては当日報告する予定である。

Fig.1. Mössbauer spectra of xLi₂O-2FeO-V₂O₅-P₂O₅ (x=0, 0.5, 1, and 1.5) glasses measured at room temperature.

Mössbauer Spectra of Li₂O-2FeO-V₂O₅-P₂O₅ Glass as a New Cathode Material for Lithium-ion Battery Kurimoto, H., Waseda, T., Okada, S., Yamaki, J., Nishida, T.

Feを含んだLi2MnO3層状酸化物のメスバウアー分光

(大阪大谷大薬¹, 阪大院理², 産総研³, 阪大 RI セ⁴) 森本正太郎¹, ○池田泰大², 田渕光春³, 川瀬雅也¹, 斎藤直⁴

Li₂MnO₃[1]は定比組成では単斜晶であるが、Li₂MnO₃に Fe を添加した酸化物も安定に合成することが可能であり、層状岩塩型構造(α -NaFeO₂型)を持つことからリチウム 2 次電池の正極材としての可能性が検討されてきた[2]。この酸化物群では Fe の添加により Li の組成も変化し、その組成は Li_{1+x}(Mn_{1-y}Fe_y)_{1-x}O₂で表されることが明らかとなっており、遷移金属サイトの平均価数は+3 よりも大きい。本研究では最も結晶性の良い試料が合成できる y = Fe/(Fe+Mn) = 0.3 の組成のものに注目し、メスバウアー効果測定により Fe の価数状態を調べることを目的とする。なお合成された試料は、その X 線回折図形に対して Rietveld 解析を行い、層状岩塩型構造の単相であることを確認している。

低温(5 K)で測定したメスバウアースペクトルの代表的な例を Fig. 1 に示す。このスペクト ルは個々のアイソマーシフトの違いにより内部磁場の分布を仮定した 2 つの sextet と 1 つの doublet で解析することが可能であった。sextet はその内部磁場の大きさから、高スピン 3 価(内部磁場の平均値が 46 T)および高スピン 4 価(内部磁場の平均値が 14 T)と考えることが できる。4 価成分の内部磁場の平均値は Sr0.5La1.5Li0.5Fe0.5O4の内部磁場に非常に近いものと なっていることを付記する。doublet はそのアイソマーシフトが-0.6 mm/s 程度であることか ら、その価数は 5 価もしくはさらに高原子価になっていることが期待される。講演では焼成 条件により Li と遷移金属イオン比すなわち x の値の異なる試料との比較することにより、前

述の解釈が正しいかどうか、すなわ ちこの系での Fe の高原子価状態が 実現する可能性について検討する。

Feの高原子価状態がこの系で実現 するとすれば、この層状岩塩型化合 物は非ペロブスカイト系酸化物で、 低温ながら高原子価鉄の安定化が起 こるきわめて興味深い物質系であり、 今後詳細に検討していく価値がある と考えられる。

Fig. 1 Mössbauer spectrum at 5 K of 30%Fe-doped Li₂MnO₃ annealed at 750°C in O₂.

M.H. Rossow, D.C. Liles and M.M. Thackeray, J. Sold State Chem., 104, 464 (1995).
 M. Tabuchi, A. Nakashima, H. Shigemura, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, T. Nakamura, M. Kohzaki, A. Hirano, and R. Kanno, J. Electrochem. Soc., 149, [5], A509 (2002).

Mössbauer study of Fe-substituted layered oxide Li₂MnO₃ MORIMOTO, S., <u>IKEDA, Y.</u>, TABUCHI, M., KAWASE, M., SAITO, T.

11P177

11P188

植物研究用⁶⁴Cuの製造および植物ポジトロンイメージング

(原子力機構¹、東工大原子炉研²) ○渡辺茂樹¹・石岡典子¹・片渕 竜也²・渡辺智¹・鈴井伸郎¹・石井里美¹・松橋信平¹

<u>1. はじめに</u>

⁶⁴Cu は半減期 12.7 時間の放射性核種で、EC+ β ⁺壊変(61%)、 β ⁻壊変(39%)と壊変形式が多様であることから、PET 診断やガン治療など医学分野において広く利用されている核種の一つである。これまで我々は、キレート部位を導入した抗体(TETA-NuB2)へ高収率で標識することを目的として、⁶⁴Cu の新規製造方法を決定し、定常製造を可能にしてきた。現在では得られた ⁶⁴Cu の PET 診断薬としての評価を行っている^[1]。一方で、銅は植物における必須元素の一つであり、生きた植物における動態を可視化した報告はない。そこで、⁶⁴Cu の新規利用法として、植物生理学的分野において ⁶⁴Cu トレーサーの有用性を示すことは大変に意義深い。我々が開発した植物研究用ポジトロンイメージング装置(Positron Emitter Tracer Imaging System; PETIS)は、植物における物質動態の可視化が可能であることから、ポジトロン放出核種である ⁶⁴Cu のトレーサーとしての有用性が十分期待できる。

そこで本発表では、開発した⁶⁴Cuの製造法及び PETIS によって計測した植物中の⁶⁴Cuの 動態について報告する。

2. 実験

⁶⁴Cuの製造は JAEA の AVF サイクロトロンを用いて ⁶⁴Ni(p, n) ⁶⁴Cu 反応により行った。濃縮 度 99.6%の ⁶⁴Ni から精製した ⁶⁴NiO 150 mg をターゲットとして、入射エネルギー20MeV の陽 子ビーム (5 μ A)を1時間照射した。照射した ⁶⁴NiO を濃塩酸に溶解させた後、イオン交換 法を用いて目的の核種である ⁶⁴Cu の分離・精製を行った。得られた ⁶⁴Cu 110 MBq を播種後約 25日のダイズへ供与し、PETIS により非侵襲的に3日間測定した。さらに、溶出液中の ⁶⁴Ni を含んだフラクションを回収し、加熱処理等による ⁶⁴NiO への再ターゲット化を行った。各 溶液における分析は、高純度 Ge 検出器を用いた。

3. 結果・考察

照射により 330 MBq の ⁶⁴Cu が生成した。⁶⁴NiO ターゲットからイオン交換法による分離を 行った結果、270 MBq の ⁶⁴Cu (回収率 89%)を得た。得られた ⁶⁴Cu の放射核種的純度は、99% 以上であった。⁶⁴Ni の再ターゲット化については、99%以上の回収率でほとんどロス無く ⁶⁴Ni の回収に成功した。植物実験では、PETIS による測定を行った結果、時間が経過するにつれ て ⁶⁴Cu が根から茎を経て移行し、36 時間後に先端の葉に到達して集積する様子を可視化する

ことに成功した(Fig. 1)。 この結果は⁶⁴Cuトレーサ ーが医学利用だけでなく、 PETIS を用いることで植 物生理学的な研究におい ても有用なトレーサーで あることを示す結果であ る。

Fig.1 PETIS による⁶⁴Cu 分布の6時間毎の積算イメージ

参考文献

[1] Y. Iida et al., 17th International Symposium on Radiopharmaceutical Sciences, Aachen, Germany (2007)

Production of ⁶⁴Cu as a biotracer and applications to *in vivo* imaging of ⁶⁴Cu in a plant.

Sh. Watanabe, N. S. Ishioka, T. Katabuchi, Sa. Watanabe, N. Suzui, S. Ishii, S. Matsuhashi

11P199 がん診断用 ⁷⁶Br の製造と ⁷⁶Br-NuB2を用いた PET イメージング (原子力機構、群大院医、群大医 COE) 〇石岡典子、飯田靖彦、渡辺茂 樹、吉岡弘樹、花岡宏史、鈴井伸郎、松橋信平、遠藤啓吾

1. はじめに

PET (ポジトロン断層画像撮像法) は、がんの画像診断法の一つとして、近年急速に普及 を遂げている。PET を支える放射性薬剤の開発では、数十年来¹¹C,¹³N,¹⁵O,¹⁸F を用いた研究 が行われてきた。これらの核種以外にも、核的性質をもとに PET 診断に応用可能なポジトロ ン放出核種が提案されており、その有用性を明らかにすることは大変意義深い。本研究では、 ¹⁸F と同属である⁷⁶Br (T_{1/2}:16.0 h, I_{β+}:57%) に注目し、⁷⁶Br の製造法並びに⁷⁶Br 結合抗体 (⁷⁶Br-NuB2)によるがん診断薬としての有効性について評価する。

2. 実験方法

⁷⁶Br は、直接法 (⁷⁶Se(p,n)⁷⁶Br) と間接法(⁷⁹Br(p,4n)⁷⁶Kr (T_{1/2}:14.6 h) →⁷⁶Br)により製造した。 いずれも天然同位体組成のターゲットを用いた。直接法では、SeO₂水溶液を 1µA の陽子ビーム (20MeV) で 20-30 分間照射した。生成した ⁷⁶Br は、陰イオン交換樹脂 (SepPak QMA, Waters) を用いて SeO₂水溶液から分離精製した。間接法では、錠剤化した NaBr(1.2 g)を 0.5-1µA の陽 子ビーム (65MeV) で 5-10 分間照射した。⁷⁶Kr 含有 NaBr の溶解には、H₂SO₄を用いた。NaBr 溶解液中の ⁷⁶Kr は、あらかじめ添加した Zn 粒と H₂SO₄から発生した H₂をキャリアガスとし て利用し、減圧バイアル瓶内の H₂O 中にトラップした。⁷⁶Kr 回収後、⁷⁶Br への壊変を待った 後 (一晩放置)、⁷⁶Kr 回収容器からトラップ水を回収した。各溶液における ⁷⁶Br の定量は、 Ge 検出器により行った。直接・間接法で得られた ⁷⁶Br は、bromoperoxidase を用いて抗体 (NuB2) に直接標識後、担がんマウスに ⁷⁶Br-NuB2 (1~4µCi/匹) を投与し、その体内動態を調べた。

3. 結果及び考察

SeO₂水溶液及びNaBrターゲットについて、単位照射条件当たりにおける⁷⁶Brの回収量を比較すると、NaBrターゲットの方がより多くの生成量が期待できる(下表参照)。TIARAにおける最大照射条件(3µA×16時間)から⁷⁶Brの生成量を算出すると、約360MBqとなる。この値は、⁷⁶Br-NuB2の標識率(約10%)の向上を見込んでも、臨床使用を考えると満足であるとは言いがたく、より多くの生成量が必要である。

担がんマウスにおける⁷⁶Br-NuB2の体内動態を調べた結果、⁷⁶Br-NuB2が腫瘍へ高く移行する ことを認めた。この結果は、⁷⁶Brを用い

たがん診断薬剤の有効性を示している。 標識原料としての⁷⁶Br 製造量の確保 は、臨床応用に向けて最も重要な部分 であり、今後も引き続き、製造量の確 保に向けた改良を進める。⁷⁶Br を用い たがん診断薬の開発については、抗体 以外にも低分子化合物への導入も今後 検討していく。

SeO ₂ 及びNaBrターゲッ	トにおける ⁷⁶ Br回収量
-----------------------------	---------------------------

製造法	ターゲット		ママルゼー	$^{76}\mathrm{Br}$
			エイルイー	(kBq/ μ A·min)
⁷⁶ Se(p,n) ⁷⁶ Br	0.1%	SeO_2	- 90 MaV	21
直接法	10%	SeO_2	20 Mev	24
⁷⁹ Br(p,4n) ⁷⁶ Kr ⁻⁷⁶ Br 間接法	NaBr		65 MeV	126

Production of ⁷⁶Br PET-radionuclide and ⁷⁶Br-labeled antibody for PET imaging of cancer diagnosis ISHIOKA, N.S., IIDA, Y., WATANABE, Sh., YOSHIOKA, H., HANAOKA, H., SUZUI, N., MATSUHASHI, S., ENDO, K.,

Se-欠乏酸化ストレスと肝細胞画分の微量元素

(昭和薬大¹、放医研²) 佐久間泰亘¹、長山敦子¹、松岡圭介¹、 本田智香子¹、松本謙一郎²、〇遠藤和豊¹

【はじめに】生体では活性酸素種やフリーラジカルにより酸化的傷害が生じ、それが種々の疾病や、老化、発癌にもつながることが明らかになってきた。セレンは金属、非金属両方の性質を持つ必須元素であり、抗炎症性、免疫促進効果、抗癌性がある。酸化ストレスのモデルとして Se 欠乏ラットを用い、生体内での活性酸素種の消去に関わる抗酸化酵素 GSH-Px 活性、SOD 活性、CAT 活性、抗酸化物質 GSH、酸化ストレスの指標である TBARS を測定し、放射化分析法による Mn, Fe, Co, Cu, Zn, Se の定量値と比較しそれらの関係を検討した。

【実験】(株)日本医科学動物資材研究所(東京)から購入した妊娠確定13日目 Wistar系 ラットに、Se 欠乏(SeD)餌(オリエンタル酵母株式会社、東京)を与えた。飲料水にはミ リQ処理水を用いた。コントロール(SeC)群には同様の餌とミリQ処理水にSeとして0.8ppm (セレン酸ナトリウム:亜セレン酸ナトリウム:セレノ・L・メチオニン=1:1:8)を添加し 飲料水とした。肝臓はホモジェネートし、超遠心分離により、核(NU)、ミトコンドリア(MT)、 ミクロソーム(MC)、可溶性画分(CS)に分離した。Mn,Cuの定量には各画分試料を秤量しポ リエチレンシートで2重封入し、10秒間中性子照射した。Fe,Co,Zn,Seの定量には各画 分試料を石英ガラスに封入し、1時間照射した。照射は日本原子力研究所、JRR-PM3あるい はJRR-4原子炉でおこない、ガンマ線スペクトロメトリーによりそれぞれの核種を定量した。

【結果】8週齢のSe量は雌雄ともに各肝細胞画分においてSeC群よりもSeD群で有意に低下していた。Fig.1に8週齢雄性ラット肝細胞画分であるNU,MT,MC,CSの鉄量(乾燥重量 濃度)を示した。Fe濃度はSeD群、SeC群ともにMC画分においてもっとも多く、次にMT画 分、Nu画分とCS画分はほぼ同じレベルであった。また同じ画分においてはSe欠乏群のほう が有意に多かった。この傾向は、雌性においても同様であった。しかし、雌性では両群とも

その絶対値は 3 倍以上多いことが示された。Cu 濃度に関しては 8 週齢雄性ラット NU, MT 画分 では 15-16mg/kg、MC 画分で 11-13 mg/kg、CS 画分では 11-16 mg/kg であった。誤差を考慮す ると SeD 群と SeC 群には大きな違いはない。そ の他、Zn については雄性 CS 画分において 140-145mg/kg で雄性の他の画分(83-90 mg/kg) より有意に多かった。

Fig. 1 Contents of Fe in the liver cell fractions of Se-deficient and Se-control male rat groups.

Oxidative stress by Se-deficiency and trace elements in cell fractions of rat liver SAKUMA, Y., NAGAYAMA, A., MATSUOKA, K., HONDA, C., MATSUMOTO, K., ENDO, K.

²²⁷Th-EDTMP を用いた転移性骨腫瘍治療に関する基礎的検討

(金沢大院医¹、金沢大学際セ²、東北大金研³)

○鷲山 幸信¹、小川 数馬²、天野 良平¹、三頭 聰明³、絹谷 清剛¹

<u>はじめに</u>

11**₽**211

我々はα線放出核種²²⁷Th ($T_{1/2}$ =18.72d)の核医学治療への応用を目指し、特に転移性骨腫瘍への適応を検討してきたなかで²²⁷Th-EDTMPを有用キレート薬剤として提案してきた。本研究では、²²⁷Th-EDTMPを用いた転移性骨腫瘍モデルラットへの治療を検討した。

<u>実験</u>

Sprague-Dowley 系 7 週齢雌ラットの左頚骨にラット乳がん細胞 MRMT-1を1×10³ 個移植し 骨転移モデルを作成した。移植後 3 週間でX線撮影により骨転移による頚骨上の骨病変を確 認した後、骨転移の状態に応じて複数のラットのグループ分けを行った。コントロール群に は PBS を、治療群には²²⁷Th-EDTMP を最大耐用線量以下の 250kBq/kg 体重として尾静脈投与し た。投与前および投与後 3 週間まで経時的に治療効果と毒性を調べた。治療効果の評価には von Frey 式痛覚試験と腫瘍体積測定を行った。毒性評価には体重測定や、血球数計測を行っ た。von Frey 式痛覚試験ではフィラメントをラットの足底に垂直にあて、ラットが足をあげ る機械刺激の閾値(ニュートンで表記)を測定した。解析では右足底と骨転移のある左足底 の機械刺激の閾値の左右比を求めた。

結果と考察

ラット乳がん細胞 MRMT-1 を移植したラットはX線撮影により、移植後3週間で左頚骨に溶 骨を認めた。²²⁷Th-EDTMP 投与による疼痛緩和効果および腫瘍増殖抑制効果を図1,2に示す。 コントロール群は治療開始後から徐々に左右の痛みの閾値比が大きくなっているのに対して、 治療群は治療開始後2週間以降から閾値比が下がってきた。腫瘍体積は治療開始直後も大き くなっていったが、²²⁷Th-EDTMP 投与時に腫瘍体積が小さかったと考えられるものはコントロ ール群や腫瘍体積が投与初期から大きかったものに比べて増殖が抑制されていることが示唆 された。今回の検討では疼痛緩和効果や腫瘍増殖抑制効果が示唆されたが、飛程が短いα線

は腫瘍移植後3週間よりも早い 時期の骨転移状態のほうが、治 療効果が上がると考えられる。 今後は最適治療開始時期の決定 や既に臨床で応用されている薬 剤(ビスフォスフォネート製剤)、 さらに²²³RaCl₂との比較を行い、 ²²⁷Th-EDTMPの持つ優位性や問題 点を明らかにする必要がある。

Treatment for bone metastasis by using alpha-emitting radiopharmaceutical, ²²⁷Th-EDTMP. WASHIYAMA, K., OGAWA, K., AMANO, R., MITSUGASHIRA, T., KINUYA, S.

11P22 PZC¹⁸⁸W/¹⁸⁸Re ジェネレータの開発と^{186/188}Re-DMSA の合成条件の検討

(東大 RIC¹、原子力開発機構²) ○ 野川憲夫¹、池田圭士郎¹、森川尚成¹、 本石章司²、松岡弘充²、橋本和幸²

1.緒言

レニウム-186 (T_{1/2}, 90h; E_{β}, 1.1 MeV; E_{γ}, 137 keV)とレニウム-188 (T_{1/2}, 17h; E_{β}, 2.1 MeV; E_{γ}, 153 keV)は β 線を放出し、放射線治療に期待される核種である。¹⁸⁸W からその娘核種で ある¹⁸⁸Re を得るために高い吸着容量を有する高分子ジルコニウム化合物 (PZC、基本構造 -O - Zr - Zr - Cl)を用いたジェネレータを実用化するための条件、および骨癌治療効果及び癌 性骨疼痛緩和作用が期待されるメソ - 2、3 - ジメルカプトコハク酸 (DMSA)のpH が1 ~14での^{186/188}Re - DMSA の合成条件について検討した。

2.実験

0.5gのPZCとpH7に調製した0.05m1の¹⁸⁸W溶液(1.40×10⁻⁴mol、257mgのWを含む)を混合し90℃で3時間加熱した後、カラム(直径2cm、長さ24cm)に充填した。次に、食塩水でPZCを洗浄し、¹⁸⁸W/¹⁸⁸Reジェネレータとした。3~4日後純水を流し溶出液を1ccずつ分取して、それぞれの放射能をγ線カウンタ(バーキンエルマージャパン、コブラ5003)で測定した。

DMSA、SnCl₂(還元剤)および過レニウム酸アンモニウム (NH₄^{186/188}ReO₄)の水溶液を、 pHを1~14に調整し、90℃で加熱した。5 μ 1の反応液をTLCプレートで展開(ア セトン溶媒)後、バイオ・イメージングアナライザー(富士写真フィルム、BAS - 1500

Mac) で測定し、^{186/188}Re - DMSA の放射化学的収率を調べた。

3. 結果·考察

PZC と¹⁸⁸W 溶液の加熱溶液を カラムに充填した場合、¹⁸⁸W の 保持率は約97%であった。ま た、¹⁸⁸Re は最初の1m1に7 0%溶出した。(Fig.1)。

放射化学的収率は p H が 1 付 近では 9 0 % 以上であるが p H を 6 に上げると 2 0 % まで低下

Fig.1 Elution ratio of Re-188 from the PZC generator

した。加熱時間を長く Sn Cl₂の量を増やし、Re に対して Sn のモル比を10にすると放射化 学的収率は約40%に上昇した。今後は、pHが中性付近でも放射化学的収率が90%以上 になる合成条件について検討する。

Study of the PZC ¹⁸⁸W/¹⁸⁸Re generator and of the synthesis condition of ¹⁸⁶Re- and ¹⁸⁸Re-DMSA

NOGAWA, N., IKEDA, K., MORIKAWA, N., MOTOISHI, S., MATSUOKA, H., HASHIMOTO, K.

1 P23 低バックグラウンド γ 線測定の日本海海水試料への適用により 得られた知見--多核種同時測定を中心に--

(金沢大環日本海域¹、中央水研²) 〇中野佑介¹、井上睦夫¹、皆川昌幸²、小村和久¹

⁷Be、²¹⁰Pb、¹³⁷Cs、²²⁶Ra、²²⁸Ra、²²⁸Thおよび²³⁴Thといった海水中に微量に存在する天然および人工放射性核種は、古くから海洋化学の分野で重要な役割を果たしてきた。ラジウム同位体、¹³⁷Csが溶存成分として水塊の動きを探るトレーサーであるのに対し、粒子に強く反応する⁷Be、²¹⁰Pbおよびトリウム同位体は粒子の関わる物質循環のトレーサーとして多くの報告例がある。これら半減期および地球化学的挙動の異なる複数の核種を組み合わせることにより、海水の物質循環に関しての総括的な議論が可能になる。当研究施設では尾小屋地下測定施設を利用した低バックグラウンドγ線測定の適用により、少量 (20 L) の海水試料での多核種同時測定が可能となった。

本研究での実験スキームをFig.1 にま とめた。20 Lの海水試料にBa、Be、Pb、 Feおよびリンモリブデン酸アンモニウム (AMP) キャリアを加えることにより、 BaSO₄、Fe(OH)₃、AMP沈殿物とともに、 ²²⁶Ra、²²⁸Ra、⁷Be、²¹⁰Pb、²²⁸Th、²³⁴Thお よび¹³⁷Csを共沈回収した。本過程では、 それぞれ²²⁶Ra (0.7 mBq/g-Ba) および ²¹⁰Pb (検出限界以下) 汚染の特に小さい Ba、Pbキャリアを使用した。

今夏 (7/14~8/10) の「H19 年度蒼鷹丸 調査航海 (中央水研)」において日本海沖 合 (水深 3700 m 地点;41°01′N 137°01′E) で鉛直方向に 14 試料 (~50 L; 5,10,50, 100, 150, 200, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500 m) を採取し、船上で本 化学処理法を適用し、上陸後、迅速にγ 線測定を開始した。

本年会では、海水試料の多核種同時測定を 目的とした低バックグラウンドγ線測定法

low-background y-spectrometory

Fig.1 Experimental scheme for coprecipitation processing of seawater samples

の確立、日本海海水試料の測定例およびそれらがもたらす知見について報告する。

Measurements of multi-radionuclides in seawater samples from the Sea of Japan by applying low-background γ-spectrometry and their implications

Nakano, Y., Inoue, M., Minakawa, M., Komura, K.

愛知川周辺の地下水動動に関する考察

(1大妻女子大社会情報、2大阪教育大水研) 堀内 公子 1、島田裕花 1、 小林 正雄 2

<研究目的>

琵琶湖の愛知川流域は豊富で上質な地下水に恵まれた地域であり、古くから上水源として 利用されてきた。また豊富な水を利用しての農業が行なわれ、日本有数の穀倉地域でもある。 近年この地域で農地の下の地層の1つである砂利層が良質の建築材料となることから、砂利 採取工事が計画され作業が始められつつある。砂利を採取したあと別の場所での廃土を補填 し表層土で覆って従来どおりの農地として使用することは問題ないとされている。しかし、 補填される廃土の性質を始め、その工事による地下水環境・農作物に及ぼす影響が懸念され ている。それに伴う地下水障害を未然に防止するために水質及び同位体など、将来の地下水 の適正利用、保全、管理のための基礎データを得ることを目的とした。

<研究方法>

砂利採水地点、水道水源地点、地下水面及び流水方向調査地点等に於ける既存の深井戸、 浅井戸、河川水等について愛知郡側(右岸)、八日市側(左岸)について選定を行い、サンプ リング試料とした。

ラドン濃度をはじめ採水深度、水温、 p H、電気伝導度、そして HCO₃⁻や SiO₂、SO₄²⁻ 等の水質、採水地の地層のデータを調査し、ラドンを指標として調査地域の地下水の動きを 考察した。

<結果及び考察>

深層地下水は表層水と異なり水温に季節変動はみられなかった。愛知川流域は良質な砂利 層が広く存在する透水性のよい地域であるが右岸は比較的シルトを含んだ層が多く、左岸で は砂礫、砂利層が多くなっているが、左岸の方にラドン濃度の多い。愛知川から離れた採水 地点のラドン濃度が高く、川周辺のラドン濃度が低い所から、愛知川による涵養が予想され る。ストレーナーを切った調査井に於いて深度別に採水した試料のラドン濃度を見ると場所 により深くなるほどラドン濃度が減少することから、深い帯水層の地下水は浅いものに比べ て動きが遅いと予想される。

以上の知見を基に愛知川周辺の地下水の動きを考察したので、報告する。

Consideration concerning movement of groundwater in the river Echi area whose index is Radon HORIUCHI, K., SHIMADA, Y., KOBAYASHI, M.

1P25 東部太平洋における海水柱中の^{239,240}Puの分布

(金沢大院自然¹, 高エネ機構²) ○隅 貴弘¹, 木下 哲一², 横山 明彦¹, 中西 孝¹

【はじめに】 環境^{239,240}Pu の主な発生源は大気圏内核実験(1945~1980年)であるが,フォ ールアウト^{239,240}Pu をトレーサとして Pu がどのようなメカニズムと時間スケールで海水中か ら海底堆積物中へ除去されていくかについて知見を深めておくことは,原子力施設などから Pu が海洋に漏出した際の影響予測に資するものである。本研究では,Pu の海洋動態を解明 する研究の一環として,データが少ない東部太平洋において,フォールアウト Pu の分布状 況を調べた。

【実 験】<u>海水試料</u>: 東大海洋研・白鳳丸の KH 03-1 次研究航海の際に東部太平洋の 10 測 点で深度別の大量採水が行なわれた。海水試料(1 試料 約 250 L) は塩酸酸性(~pH 2) と し,船上で収率トレーサ²⁴²Pu と²⁴³Am を添加後,鉄共沈が行なわれ,水酸化物沈殿が持ち帰 られた。

Puの化学分離・測定: 持ち帰られた水酸化物沈殿について,東大海洋研で,まず Th と Pa の分離が行われ,その後,本研究で Pu の分析を行った。Pu フラクションを 8M 硝酸溶液とし,亜硝酸ナトリウムで Pu をIV価に調整してから,硝酸系での陰イオン交換樹脂カラム法により Pu の分離・精製を行った。精製された Pu を電着し,Si 半導体検出器を用いるα線スペクトロメトリにより Pu 同位体の定量を行った。

【結果と考察】^{239,240}Pu 濃度の深度分布は,深度 600 m 付近に濃度極大層があり,中層で比較的低濃度となり,海底付近で濃度が上昇する。濃度極大層の^{239,240}Pu は溶存状態であると考えられる。また,海底近傍で濃度が上昇しているのは,一旦海底堆積物に沈積した Pu が再溶出しているためと考えられる。南半球で²³⁸Pu が明瞭に検出された。同じ経度の北半球側と南半球側で^{239,240}Pu 濃度の深度分布パターンに差があり,²³⁸Pu/^{239,240}Pu 放射能比も大きく異なるので(Fig.1),北半球と南半球で水塊は相互に混ざり合っていないと考えられる。

Fig. 1 238 Pu/ 239,240 Pu activity ratio

^{239,240}Pu in the water columns of the Eastern Pacific SUMI, T., KINOSHITA, N., YOKOYAMA, A., NAKANISHI, T.,

更素動物物根板の木不地るけはご必調地晶半登銷 924H

1 奉 西中 ,1 氢明 山) ,2 氢勤 水青 ,「樹五 钵土 ,「大焉 田山〇 (5 野大死金 ,「然自刹大乐金)

。式书馬克察等了 いとう治関のう憲地、 や 脂をはるれる 4 なり変 母 経な 6 よの 3 可 裏 熱 対 捜 放 然 天 の 木 不 地ブいはゴ市島舗の教霊地、おう深冊本。るいフパら群はセーマるヤ剱示を具上理票のRnの戻 大奏此い前雲地、よういない雲地島半登銷(平 7002)年 91 知平の回合。 れれち風巌や祇野の 更影 ∩A の中灵空のよは水不此で土真の層湖 3 前直の憲地陪南県車兵(辛 2001) 年7 筑平おで 国活鉄, (さて水は行浴系冊さん分子の61 アバーン) 割関関所の(利用の) 他であっかい (うち) 治

ス板に電着した。Po, U, Th の電着説料について a 線スペケトロメトリを行い, Ba(Ra)SO, 奥爾市大市本部市市であるU と Th の粗分離を行った。U こうくもくになる (1) ないない しょうしょ U うれん (1) とうしょう (1) ない 本下約系額型でいが、
兼前のの4 るよご活动
既, 気がていた
含素的のの4 として
いたいが、
新校浩応
による Po の4 また
いたいが、
第一部のの4 として
いたいが、
第二部のの4 として
いたいがの4 として
いれいがの4 として
いたいがの4 として
いたいがの4 として
いたいがの4 として
いたいがの
4 として
いたいがの4 行った。水酸化鉄(Ⅲ)を 2M HCI で溶解し, 溶解しなかった BaSO4を 5別した後, 2M HCI 容 次逐
ふ(
兼
献
ふ
本
か
同
の
R
a
B
a
S
C
R
a
B
a
S
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R
a
C
R 型用・利用・利用・10-11 (1 232 U-232 Th トレーン・, 200 トレーサと Fe 担体・Ba 担 担 化 東酸の回Ⅰご目もⅠ∂℃6日4月4, ブいはご(
四平述,
で前問) 点地20市島論 (親 実)

・U⁸⁶² ()
動物腺が更動。
P⁰¹² (2) ,
約3 る
う
京
ー
う
「
乳
ま
れ
お
出
指
根
城
U^{8E2}\U^{4E2} 、、や
小変らんらお
おまれ
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
< の至 0857 (I) 'ンいなひ I 図 いわれ アノ五斛を長放のされるquiz るれはい 間の養雷 of~水菜 おフィルC J of⁰¹² 、はな。下示311図を小変朝経の更影 oq⁰¹² ,U⁴²² ,U⁸²² る付はゴ水下赴オノ 現料で四平対市島舗 【察等と果訴】

。るあで宝そる市察考ぶるちていぐぶたーデのoq^{ois}の日を貝をで上去し掛��を囲鐘値変の 胡常平ブノ誘郷を飛杯す多や、ブのい無欲モーデの前雲地。 られえたきちゅうたち給サ 51次不世述の**P**4222 の量大アン半辺憲余切及憲本、アノリ因剤の **o**4012 の 更熱高。 るれるえ巻り いないアノ 海 生 約 器 流 木 不 世 な 式 産 続 式 っ あ う 厳 も 添 更 雲 お う 一 平 学 市 島 輪 フ い は ゴ 靄 地 の 回令、さなちごい無な値変とんとおIJ出銷棟城 U855/U455 心灰更熱 U455 。 ゴー なんなんなら こる 「 健変 (なん ,) 高 (上 奥 鄭 U⁴⁶²

The concentrations of radionuclides in groundwater samples after the Noto Peninsula

YAMADA, N., UESUGI, M., SHIMIZU, T., YOKOYAMA, A., NAKANISHI, T. **Farthquake 2007**

伊豆弧における流紋岩の 230Th /238U と 226Ra/230Th 放射能強度比

(明治大理工) 〇高橋 賢臣、栗原 雄一、佐藤 純

1. 緒 言

伊豆弧の火山は、沈み込む海洋プレートから放出される流体とマントルとの相互作用によって発生すると考えられている。ウランおよびラジウムはトリウムに比べて流体によって移動しやすいため、伊豆弧の火山噴出物では、ウラン系列の²³⁸U-²³⁰Th-²²⁶Ra 間は²³⁸U と²²⁶Ra が多い放射非平衡になることが想定される。そこで、本報では伊豆弧のマグマで結晶分化の最終段階に相当する流紋岩について²³⁰Th/²³⁸U と²²⁶Ra/²³⁰Th の放射能強度比の観測を行ったので結果を報告する。

2. 試料

神津島産火山岩:838年の噴火による流紋岩質噴出物(Tj₁-Tj₄) 新島産火山岩 :886年の噴火による流紋岩質噴出物(My₁-My₃)

3. 実験操作

試料は精粉砕した後、HF-HClO₄-HNO₃の混酸により酸分解した。試料中のウランとトリ ウムは、UTEVA Spec. resin を用いて単離し、TTA - ベンゼンで精製・抽出して、有機相を ステンレス製の試料皿に焼付けアルファ線スペクトロメトリ用の線源とし²³⁸U と²³⁰Th を定 量した。一方、試料中の²²⁶Ra は、試料を測定容器に入れ密封し、²²⁶Ra の娘核種が放射平衡 に達するまで 30 日以上保管した後ガンマ線スペクトロメトリにより定量した。

4. 結果

測定結果を Table 1 に示す。神津島・新島の両火山からの噴出物の²³⁰Th/²³⁴U 放射能強度比は 0.97 - 1.18 の範囲にあり、²²⁶Ra/²³⁰Th 放射能強度比は 0.71 - 1.04 の範囲であった。

Sample	•	Speci	fic activity (mBq.	Activity	ratio	
		238 U	230 Th	226 Ra	$^{230}{ m Th}$ / $^{238}{ m U}$	$^{226} m Ra$ / $^{230} m Th$
Kozu-shima	Tj_1	18.17 ± 0.04	21.42 ± 0.54	-	1.18 ± 0.03	-
	Tj_2	18.69 ± 0.74	19.88 ± 0.10	18.06 ± 0.31	1.06 ± 0.04	0.91 ± 0.02
	Tj_3	19.63 ± 0.47	18.67 ± 1.30	18.72 ± 0.54	0.95 ± 0.07	1.01 ± 0.07
	Tj_4	21.01 ± 1.00	21.48 ± 0.91	20.38 ± 0.40	1.02 ± 0.07	0.95 ± 0.04
Niijima	My_1	12.48 ± 0.14	13.03 ± 0.72	9.28 ± 0.22	1.06 ± 0.06	0.71 ± 0.04
	My_2	16.92 ± 0.63	16.79 ± 1.65	17.56 ± 0.45	0.97 ± 0.10	1.04 ± 0.10
	My_3	17.83 ± 0.28	17.88 ± 0.02	-	1.00 ± 0.02	-

Table U, Th and Ra data in the volcanic products from Kozu-shima and Niijima

²³⁰Th/²³⁸U and ²²⁶Ra/²³⁰Th activity ratios in rhyolite from Izu arc volcanoes TAKAHASHI, M., KURIBARA,Y., SATO, J.

加速器質量分析法(AMS)による屋久杉年輪中¹⁴C濃度の経年変化

(学習院大¹、東京大²) ○上野弘貴¹、村松康行¹、松崎浩之²、 土屋(春原)陽子²

大気中¹⁴C(半減期 5730 年)は宇宙線起源の中性子と大気上層¹⁴Nとの(n,p)反応により生成される。¹⁴Cはすぐに酸化され¹⁴CO₂となり大気中の炭素サイクルに取り込まれる。そのため当時の大気中¹⁴C/¹²C比はCO₂を光合成により取り込んだ植物に記録されていると考えられる。また銀河宇宙線は、太陽活動期に発達する太陽系磁場により遮られて減少する。そのため地球に入射する宇宙線量は太陽活動と密接に関連おり、大気中¹⁴C濃度と気候変動との相関が示唆されている。

本研究では、屋久杉の年輪から1年ごとに試料を採取して加速器質量分析法(AMS)を用い ¹⁴C/¹²C比を測定する方法を検討し、過去における大気中¹⁴C濃度の経年変化を調べた。またこ こでは7世紀頃の万葉寒冷期に着目し、年代範囲西暦 561~801年の年輪試料中¹⁴C/¹²C比を測 定した。

本研究では 1937 年に切り倒されたと推定される樹齢 1670 年の屋久杉を用いた。この杉の 年輪を1年ごとに分け、酸処理等により当時の¹⁴C/¹²C比を固定しているαセルロースを抽出し た。そしてαセルロース中の炭素を完全に酸化しCO₂とした後、学習院大で設計した小型真空 ラインを導入して精製した。その後鉄触媒による水素還元法によってCO₂からグラファイトを 生成し、東京大学のAMSを用いて¹⁴C/¹²C同位体比を測定した。

今回AMSによる測定で少量の試料(木の試料で約 20mg、αセルロースで 3mg)からグラファ イト 1mgを生成し十分な精度(±3~5‰)のデータが得られた。Fig1.に得られた Δ^{14} C値(‰)の経年 変化とIntCal04 のデータを表す。 Δ^{14} C値は測定した試料中¹⁴C/¹²C比と標準物質NISTシュウ酸 の¹⁴C/¹²C比とのずれを千分率で示したものである。IntCal04 は欧米の試料から構成された年代

較正データベースである。本研究 の測定結果はIntCal04 とほぼ同様 の変動が見られた。しかし細部に 目を向けると西暦 600~700 年ごろ にIntCal04 より高い Δ^{14} C値を示し、 日本特有の変動である可能性があ る。また、西暦 700 年付近に Δ^{14} C 値の最大値を示しており、これは 西暦 620~740 年頃の万葉寒冷期 と関連していると考えられる。

Fig.1 Carbon 14 record obtaind in a Yaku cedar tree

Radiocarbon analysis in tree rings of Yaku-cedar by AMS for investigating secular variation of atmospheric ${}^{14}C/{}^{12}C$ ratios

UENO, H., MURAMATSU, Y., MATSUZAKI, H., TSUCHIYA(SUNOHARA), Y.

大気中元素状炭素粒子の¹⁴C 測定前処理における同位体分別

(静大理1、東大院工原2)和田秀樹1,中島賢邦1,松崎浩之2, 鈴木款1、岩田弘志1, 阿久津翔吾1

はじめに: 大気中エアロゾルの元素状炭素粒子(EC)の起源を特定するためには安定同位体や 放射性同位体組成が有効である.加速器質量分析法(以降 AMS という)により、放射性炭素(¹⁴C) 測定は十分可能になった.AMS 測定は、EC を分離し,酸化剤による燃焼の後,グラファイト化す る.この処理過程で不純物、硫黄、窒素、ハロゲン等が含まれる時、鉄粉上でのグラファイト化 は妨害される。しかし、銀線、サルフィックスを使う事でグラファイト試料生成が可能となった. グラファイト化の過程で収率が十分でないと同位体分別が起きる.本研究では、AMSで¹℃測定を するためのグラファイト化の過程において、炭素 12,13,14 の分別過程に従来考えられていた質 量依存則とは異なる関係を見いだした.

結果:標準試料の NIST シュウ酸は、酸化銅で酸化した後、鉄粉を入れた石英管に,水素ガスと 二酸化炭素を導入して、約640℃で還元してグラファイト化をする.静岡大学の場合、NIST 試料 のグラファイトへの変換率は、40-90%であり、収率とともに炭素同位体比は変化し、δ¹³C とδ ¹℃の関係はほぼ1:2の割合で変化する関係が認められた.ところが、エアロゾル中の元素状炭 素粒子(EC)の測定において、同一試料を用いてサルフィックスの量を変えて不純物を除去した二 酸化炭素をグラファイト化して炭素12,13,14の同位体分析を行った結果(図1と図2参照)、生 成されたグラファイトのδ¹³Cとδ¹⁴C値の関係は、1:2の関係から大きくはずれ、1:5の関係が 認められた.サルフィックスを使用した時,質量の依存の割合が大きくなり補正値の意味を再考 する必要がある.

図1

Mass-dependent isotoic fractionation during preparation of elemental carbon for studying the origin of atmospheric aerozol

Hideki Wada, Kuniyoshi Nakajima, Hiroyuki Matuzaki, Yoshimi Suzuki, hiroshi Iwada, Shougo Akutsu (Shizuoka Univ.)

宇宙線生成核種²⁶Al,¹⁰Beの定量による照射年代測定 (京大院工¹,京大炉²,東大院工学系³,KAERI⁴) 〇北條浩章¹,関本俊²,高宮幸一²,沖雄一²,柴田誠一²,佐々木隆之¹, 松崎浩之³,S.H.Kim⁴,J.H.Moon⁴,Y.S.Chung⁴,馬原保典²

[はじめに] 2次宇宙線 (中性子、ミューオンなど)と地表の石英との核反応により原位置で生成され蓄積してきた長寿命放射性核種²⁶Al ($T_{1/2}$ =7.17×10⁵ yr), ¹⁰Be ($T_{1/2}$ =1.51×10⁶ yr)を定量することで表面露出年代、埋没年代、侵食速度、地殻変動など地形の形成プロセスを考察する情報を得ることが出来る。当研究室ではこれまでに珪岩に対し²⁶Al の深度分布を調べ照射年代と侵食速度が求められたが⁽¹⁾、今回、採取岩石から分離した石英について、²⁶Al に加え¹⁰Beを同一試料から分離し加速器質量分析(Accelerator Mass Spectrometry : AMS)で同位体比を求め、その岩石に含まれる²⁷Al 含有量(ppm)を中性子放射化分析によって求めることで、石英中に生成した²⁶Al, ¹⁰Be の生成量の定量を行ったので報告する。

[実験と結果] 分析地域は、内陸部準平原で地層の鍵層を形成していないため、地質学的手法 で侵食速度を得ることが難しい阿武隈高原に着目し、その風化花崗岩丘陵である。露頭(地表 0m)、深度(0.2m、0.5m、1.0m、1.5m)の各地点から採取した岩石から分離した石英試料(1.0-1.5 g)を塩酸処理および1%HF,1%HNO3処理⁽²⁾し石英の精製を行い、Be キャリアを添加し混酸

(HF, HNO₃, HClO₄)で加圧溶解(4 atm, 150 ℃)した。pHを調整し目的イオンを沈殿法で回収し、 陰イオン・陽イオン交換法で単離し沈殿法で得た水酸化物を電気炉で酸化物に焼成した。 AMS 用カソードにプレスし、東京大学タンデム加速器研究施設において²⁶Al-, ¹⁰Be-AMS に 供した。また、韓国原子力研究所(KAERI)の研 究用原子炉の PTS-IIIにおいて中性子放射化分 析を行い²⁷Al 含有量を測定した。これらの測 定結果から²⁶Al, ¹⁰Be を定量し、深度プロファ イルを作成した。その結果、深度方向に核種濃 度が減少していることが分かった。さらに、侵 食速度について考察を進めている。

文献 (1) S. Shibata. et. al., J. Nucl. Radiochem. Sci., 2006, 7, 33-35. (2) C.P. Kohl, K. Nishiizumi, Geochim. Cosmochim. Acta, 1992, 56, 3583-3587.

Table. 1. Preliminary results of in situ-produced ¹⁰Be and ²⁶A1 concentrations measured

Sample	Depth	Nuclide concentration (10 ⁵ atoms/g)					
ID	(cm)	¹⁰ Be			26A1		
FLO	0	2.57	±	0.94	47.62 ± 7.04		
KL1	52	2.31	±	0.96	43.03 ± 10.43		
KL2	130	2.32	±	0.95	60.06 ± 20.04		
KL3	260	1.02	±	0.84	32.99 ± 6.78		
KL4	390	0.79	±	0.87	29.18 ± 4.67		

Measurement of exposure age by determination of secondary cosmic-ray-induced ²⁶Al and ¹⁰Be HOJO, K., SEKIMOTO, S., TAKAMIYA, K., OKI, Y., SHIBATA, S., SASAKI, T., MATSUZAKI, H., KIM, S. H., MOON, J. H., CHUNG, Y. S., MAHARA, Y.

核融合研におけるトリチウム安全取扱い要素技術の開発状況

(NIFS) ○朝倉大和、田中将裕、河野孝央、宇田達彦

核融合科学研究所では大型ヘリカル実験装置(LHD)を用いた重水素実験を予定している。 重水素実験ではD-D核融合反応によって真空容器内でわずかながらトリチウムが生成される ことから、トリチウムの安全管理を目的に、高分子膜を利用した気相中トリチウム除去装置 とプロトン導電性セラミックスを利用した高感度トリチウムモニターの実用化を進めている。 各要素技術の適用性評価結果と実用化の見通しを以下に要約する。

1. 気相中トリチウム除去装置

トリチウムを酸化して水蒸気の化学形態に変換後、吸着剤により脱湿除去する方法が一般 的である。これに対して、乾燥空気の製造用に市販されている中空糸状高分子膜モジュール が適用できれば、吸着剤の再生運用が不要となり、設備の小型化とコストの低減が見込める。

これまでの適用性評価で、図1に示す構造の市販高分子膜モジュールで、供給側を加圧、 透過側を常圧運転条件とし、露点と目標露点の偏差を制御指標としてパージガス流量をPI D制御することにより、モレキュラシーブ(MS)吸着塔と同様の極低露点(-60℃以下)を 長期間安定に維持可能であることを実証した。

また、装置起動後に目標露点に到達するまでの時間 遅れを解消するために、高分子膜除湿装置とMS吸着 塔を組合わせた装置を考案、試作し、有効性と実用性 を検証した。現在、LHDトリチウム除去装置に適用 することを想定して詳細な設備設計を進めている。

2. 高感度トリチウムモニター

重水素実験時のトリチウム安全管理の一環として、電気化学的水素ポンプと比例計数管を 組み合せたスタック排気ガス監視用トリチウムモニター(図2)の開発を進めている。

本計測システムを実用化するための要素技術として、プロトン電解セルを応用した水素ポンプの実用化を㈱TVKとの共同研究として スタックへ スタックへ

ンプの実用化を㈱TYKとの共同研究として 推進してきた。その結果、空気中の水蒸気を 分解し水素ガスとして抽出・濃縮する水素 ポンプとして、試験管型プロトン導電性酸化物 (CaZro.9Ino.1O3-a、TYK 製)を適用し、電極仕様 の改良と共に電解セルの薄肉、長尺化により 1本当りの水素抽出速度として 1.8cc/min が 達成できるようになった。また、Ar ガスを

Q,

______ プロトン電解セル

(温度:<800°C)

Q.C

T濃度

Q=H,T,D

測定ガス

封入・循環した閉ループ中への水素ポンプ運転により、運転時間にほぼ比例してArガス中の水素濃度を任意に増加(濃縮)できることが検証でき、モニター試験に進む計画である。

Development of key technologies for safety treatment of tritium in NIFS ASAKURA, Y., TANAKA, M., KAWANO, T., UDA, T.

図1 高分子膜モジュールの構造

比例計数管

Q,

排気ポンプ

Q,

11P32 義務教育課程または必修課程として中学・高校で教えられるべき放射線・放射能の基礎的知識

aNPO法人放射線教育フォーラム, b青森大学大学院, c広領域教育 研究会, d千葉大学先進科学研究教育センター, e県立船橋高, f文京 学院大付属女子中・高, g立教新座中・高 ○松浦辰男^a、江田 稔^{a,b}、飯利雄一^{a,c}、黒杭清治^a、廣井 禎^a、

三門正吾^{a,d}、舩田 優^{a,e}、谷田貝秀雄^{a,f}、渡部智博^{a,g}

われわれ NPO 法人放射線教育フォーラムは、放射線、放射能、原子力、 学校教員の有志により 1994 年に発足し、2000 年にNPO法人の認証を受けたボランタリー 組織であり、エネルギー・環境及び放射線・原子力の正しい知識を普及させることを 目的として、①勉強会・シンポジウムの開催、②論文誌発行等による情報発信、③要 望書による政策提言などの活動を行っている。中でも、学校における放射線・放射能 に関する教育をもっと充実させることに重点を置いて、「教育課程検討委員会」で検 討し、種々の努力をしている。

これに関して、2005 年 8 月 15 日付けにて、「エネルギー・環境教育の充実のため の学習指導要領の改善について」という要望書を文部科学省(初等中等教育局)ならび に中央教育審議会に提出した。さらに、それを補足するために、2006 年 10 月 31 日 付けにて「義務教育課程において学ばせたい「放射線教育」の内容についての提案」 なる文書を同じく文部科学省初等中等教育局に提出した。この文書の内容は、

(1)まえがき、(2)放射線に関する教育の必要性、(3)小・中学校の教科書における放射線等の記述の実情、(4)学校教育における放射線関係の知識を形成する上での問題点、(5)今回の提案――義務教育において取り扱うべき放射線関係の内容、(6)原爆に関する教育について、からなっている。

さらに、教育課程検討委員会では、このうちの(5)の各学校のどの段階、特に義務教育課程又は必修科目でどのような内容を教えるべきかについて、具体的に検討している。その内容というのは、① 放射線・放射能の本質、放射線の人体影響、放射線の種々の利用の現状、② 天然の放射線・放射能がこの環境に存在すること、③放射線の被ばくを防ぐには、(a)線源からの距離を取る、(b)遮蔽体を置く、(c)作業時間を短縮する、という3つの方法があるということである。本発表では、これらの内容を紹介する。

Fundamental knowledge about radiation and radioactivity which should be taught as compulsory course at junior or senior high schools

MATSUURA, T.,^a EDA, M.,^{a,b} IIRI, Y.^{a,c} KUROKUI, S.,^a HIROI, T.^a MIKADO, S.^{a,d} FUNADA, M.,^{a,e} YATAGAI, H.^{a,f} WATANABE, T.^{a,g} (^aRadiation Education Forum, ^bAomori Univ., ^cKoryoiki Kyoiku Kenkyuukai, ^dChiba Univ., ^eFunabashi S. High School, ^fBunkyou Gakuin High School, ^gRikkyo Niiza High School)

放射線教育フォーラムにおける専門委員会活動について

aNPO法人放射線教育フォーラム、^b青森大学大学院、 c大妻女子大学社会情報学部、^d放射線影響協会 ○松浦辰男^a、江田稔^{a,b}、堀内公子^{a,c}、河村正一^a、金子 正人^{a,d}、田中隆一^a

NPO 法人放射線教育フォーラムには現在、①「教育課程検討委員会」、②「実験教 材検討委員会」、③「リスク問題検討委員会」、④「低レベルの人体影響に関する検討 委員会」。⑤「教科書記述調査検討委員会」、⑥「マスコミ報道に関する検討委員会」の 6つの専門員会があって活動を行っている。これらの委員会の報告書はフォーラムの 年度末報告書に収録されている。最近のこれら委員会の活動内容を紹介する。

①「教育課程検討委員会」――放射線の現代社会における役割の重要性にかんがみて、 今後の市民の教養として不可欠な放射線、広くエネルギー・環境問題を学校現場でど のように取り上げるべきかについて検討している。

②「実験教材検討委員会」――放射線教育のうち、実習による放射線に関する学習方法について検討している。基本的内容は、環境放射線を簡単な測定器で測定して、少量の放射線が常時身の回りに存在することを体験として実感することである。

③「リスク問題検討委員会」――我々の身辺には、種々の原因による危険性が存在す るが、特に、科学技術の社会への応用において、ベネフィットと共に必然的に存在す るリスクをいかに学校教育において取り上げるべきかを検討している。

④「低レベルの人体影響に関する検討委員会」――国民の間には放射線の影響について過度の不安感がある。この原因のひとつに発がんや遺伝的影響のリスクが、大線量から極低線量まで、「しきい」値のない直線的な比例関係にあると仮定していることがある。この委員会では、最近の新しい実験的データや疫学的データを基に、一般人が「放射線を正当に怖がる」ような教育に役立つ資料を作る事をめざす。

⑤「教科書記述調査検討委員会」――約10年前は、高校や中学で使用されている教科書における原子力・放射線関係の記述が、理科の教科書においてさえ明らかに科学的な誤りがあり、理科以外の教科書では科学的な不正確さのほかに価値観的に偏った記述が多かった。以来我々は、教科書における不正確・不的確な記述を詳しく具体的に指摘するのが仕事となった。最近は、大きな誤り・偏りが少なくなっている。

⑥「マスコミ報道に関する検討委員会」――マスメディアの放射線・原子力に関する 報道は、その科学的客観性よりも、その報道をいかにセンセーショナルに、また一般 人が抱いている感情に迎合することをめざしているように思えることがある。この様 な報道を批判して、正しい情報が行き渡ることを願って、この委員会は存続している。

Workshop activities at Radiation Education Forum

MATSUURA, T.,^a EDA, M.,^{a,b}, HORIUCHI, K.,^{a,c} KAWAMURA, S.,^a KANEKO, M.,^{a,d} TANAKA, R.^a (^aRadiation Education Forum, ^bAomori Univ., ^cOtsuma Women's Univ., ^dRadiation Effects Association,)

1P34

「エネルギー・環境・放射線セミナー」の現状について (NPO法人放射線教育フォーラム)〇長谷川 圀彦、松浦辰男

1. はじめに

平成13年度から主に文系の教職員を対象とする「原子力体験セミナー文系コース」が実施され るに当たって、NPO法人放射線教育フォーラムがこの事業に協力し、「エネルギー・環境・放 射線セミナー」を新規事業として開設した。このセミナーは、教職員等のエネルギー・環境・放 射線などに対する理解を深めることにより、中学校では平成14年度から、高等学校では平成1 5年度から始まっている「総合的な学習」の時間などを通じて正しい知識が生徒に普及すること を目指すものである。

この事業は「エネルギー環境問題、放射線及び原子力問題に対する一般市民の公正な判断力資質 の養成とこの分野における将来の人材の確保及び育成のために、学校及び社会におけるこの分野 の教育の充実と正しい知識の普及を図り、もって公益の増進に寄与する」という NPO 法人放射線 教育フォーラムの目的にかなったものである。

2. セミナーの概要

セミナーは全国10地区(北海道地区、東北地区、北関東地区、南関東地区、静岡・山梨地区、 愛知・岐阜・三重地区、富山・石川・福井地区、近畿地区、中国・四国地区、九州・沖縄地区) で開催した。このうち1日開催のコースと2日開催のコースをそれぞれの地区で設けた。

コース内容は、放射線教育フォーラムの会員が中心となってそれぞれの分野の専門家により、主 として中学校・高等学校の文系職員等教育関係者を対象として総合的な学習に時間の授業に役立 つような内容で企画した。(1)教育システムと教育問題(2)21世紀のエネルギー・環境問 題、(3)自放射線・放射能の基礎と利用(3)パネル討論会・トッピクス(4)放射線を観察 するための実習と演示(5)見学会(6)交流会

3. 実施結果

平成13年度から6年間実施した結果は次の通りである。

参加者の目標は南関東地区で200名とし、それ以外の地区では60名とし、合計750名(平成13年度)とした。平成14年度の参加者の目標は600名(南関東地区で160名、その他の地区はそれぞれ50名)平成15年度のそれは550名(南関東地区で100名、その他の地区は50名)で計画した。それぞれの年度は500名をやや下回る参加者であった。平成16年度、平成17年度、平成18年度は、募集定員500名のところ、それぞれ533名、570名、487名であった。また、参加者から得られたアンケート結果は、ほぼ良好な調査結果であった。

4. 今後の課題

文系教員の参加者数が半数以下であること、コースの内容と「総合的な学習の時間」、各地区の 創意工夫、意見交換会、さらに産・官・学・市民との協力の在り方についても検討を行う。